A DFT Study of Boron Nitride-confined Nickel Single Atoms for the Oxidation of Methane to Methanol

Sanmei Wang,^a Bo Yu,^{b*} Liangbing Wang^{a*}

 ^a State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
^b Ningbo Fengcheng Advanced Energy Materials Research Institute, Fenghua District, Ningbo, Zhejiang, 315500, China

*To whom correspondence should be addressed.

E-mail: yu.bo@fcnano.cn; wanglb@csu.edu.cn

Fig. S1 Optimized structures of M_1/O_3 -BN (M=Fe, Pd, Ni). The purple, orange, cyan, dark blue, bright red, and pink spheres represented Fe, Ni, Pd, N, O, and B atoms, respectively.

Fig. S2 Charge density difference for CH₄ molecule adsorbed on (a) Fe_1/O_1N_2 -BN, (b) Fe_1/O_2N_1 -BN, (c) Pd_1/O_1N_2 -BN, (d) Pd_1/O_2N_1 -BN, (e) Ni_1/O_1N_2 -BN, and (f) Ni_1/O_2N_1 -BN. The isosurface value was 0.0015 e/Å³. The gray, white, purple, orange, cyan, dark blue, bright red, and pink spheres represented C, H, Fe, Ni, Pd, N, O, and B atoms, respectively.

	charge-transfer values (e)	ICOHP (eV)
Fe ₁ /O ₁ N ₂ -BN	0.01	-2.46
Fe ₁ /O ₂ N ₁ -BN	0.03	-2.71
Pd ₁ /O ₁ N ₂ -BN	0.01	-3.03
Pd ₁ /O ₂ N ₁ -BN	0.11	-3.13
Ni ₁ /O ₁ N ₂ -BN	0.003	-2.50
Ni ₁ /O ₂ N ₁ -BN	0.03	-2.68

Table S1 The charge-transfer values from CH_4 to the catalyst. The integrated crystal orbitalHamilton population (ICOHP) between the metal atoms and the C atom of adsorbed CH_4 .

Fig. S3 Density of states (DOS) of (a) Fe_1/O_1N_2 -BN, (b) Fe_1/O_2N_1 -BN, (c) Pd_1/O_1N_2 -BN, (d) Pd_1/O_2N_1 -BN, (e) Ni_1/O_1N_2 -BN, and (f) Ni_1/O_2N_1 -BN catalysts. The dotted black lines represented the Fermi energy level.

Fig. S4 Variations of energy and temperature against the time for the AIMD simulations of Ni_1/O_1N_2 -BN. Insert pictures were top and side views of Ni_1/O_1N_2 -BN after running 10 ps with a time-step of 1 fs at 500 K.