Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

SI Fig. 1: XPS spectra for TiO₂ precursor for Ti peak

SI Fig. 2: (a) ¹H-NMR spectra of SAPOGA (b) ¹³C-NMR spectra of SAPOGA

SI Fig. 3: The linear regression analysis for (a) Dubbin-Radushkevich (D-R) isotherm; and (b) Freundlich isotherm

SI Fig. 4: Linear regression analysis for (a) Lagergren pseudo 1st order kinetics;
(b) Pseudo 2nd order kinetics model

SI Fig. 5: The variation in conditional extraction constants for UO_2^{2+} and Th^{4+} on SAPOGA-TiO₂ as a function of reciprocal of absolute temperature

SI Fig. 6: The optimized structure for the sorbent SAPOGA-TiO₂

SI Fig. 7: The optimized structure of (a) $UO_2(NO_3)_2$ and (b) $Th(NO_3)_4$

SI Fig. 8: Cumulative % stripping of metal ions using multiple contacts of aqueous phase complexing agents

	Langmuir			Dubinin-Radushkevich			Freundlich		
	q _e	b		x _m	Е		K _f (mmol/g		
	(mg/g)	(l/mol)	χ^2	(mg/g)	(kJ/mol)	χ^2)	n	χ^2
									0.989
UO_2^{2+}	231	0.05	0.9989	200	15.7	0.9875	115	9	0
									0.986
Th^{4+}	458	0.08	0.9972	381	19.0	0.9842	154	13	7

SI Table.1: Analytical results obtained by linear regression analysis of the experimentally obtained data using Langmuir, D-R, and Freundlich isotherm models

SI Table.2: The linear regression analysis of the experimentally obtained data using Lagergren 1st order, Intra particle diffusion and Pseudo 2nd order kinetics models

	Lagergren first order								
	kinetics model			Intra particle diffusion model		Pseudo 2 nd order model			
				k _p			q _e	k ₂	
	q _e	$\mathbf{k}_{\mathrm{ads}}$	χ^2	$(mg g^{-1} min^{-1})$	С	χ^2	(mg g ⁻¹)	$(mg g^{-1} min^{-1})$	χ^2
UO_2^{2+}	66	0.08	0.7817	51	23	0.9997	88	5.8E-04	0.9973
						0.			
Th^{4+}	89	0.04	0.6866	48	29	9982	99	3.6E-04	0.9956

SI Table.3: Calculated structural parameters (bond length in Å) of complexes of UO_2^{2+}/Th^{4+} ion with SAPOGA-TiO₂ in presence of nitrate ion.

System	$M-O_{C=O}(Å)$	M-O _{ethereal} (Å)	M-O _{NO3} (Å)
$UO2(NO_3)_2$ -L	2.423, 2.593	2.835	2.442, 2.427, 2.504,
			2.517
Th(NO ₃) ₄ -L	2.441, 2.600	2.783	2.515, 2.519, 2.453, 2.480,
			2.597, 2.578, 2.518

Equilibrium reaction	Free energy of		
	adsorption (kcal/mol)		
	Gas	Aqueous	
	phase	phase	
$[UO_{2}(H_{2}O)_{5}]^{2+}(aq) + 2NO_{3}(aq) + L_{(aq)} \longrightarrow UO_{2}(NO_{3})_{2} - L_{(aq)} + 5H_{2}O$	-312.5	-30.2	
$[Th(H_2O)_{10]}^{4+}(aq) + 4NO_3^{-}(aq) + L_{(aq)} \longrightarrow Th(NO_3)_4 - L_{(aq)} + 10H_2O$	-915.1	-83.7	
$UO_2(NO_3)_{2(aq)} + L_{(aq)} \longrightarrow UO_2(NO_3)_2 - L_{(aq)}$	-24.9	-6.6	
$Th(NO_3)_{4(aq)} + L_{(aq)} \longrightarrow Th(NO_3)_4 - L_{(aq)}$	-87.8	-36.8	

SI Table.4: Calculated value of Gibbs free energy (kcal/mol) in the gas and aqueous phase

SI Table.5: Calculated charge and orbital population using NBO analysis in aqueous phase at the B3LYP/TZVP level of theory.

System	charge	S	р	d	f
$UO_2(NO_3)_2$ -L	1.803	4.17	11.77	11.46	2.78
Th(NO ₃) ₄ -L	1.694	4.20	11.99	11.12	0.981
$[UO_2(H_2O)_{5}]^{2+}$	2.088	4.14	11.75	11.38	2.61
$[Th(H_2O)_{10}]^{4+}$	2.175	4.18	11.99	10.91	0.73
$UO_2(NO_3)_2$	2.195	4.11	11.74	11.30	2.62
Th(NO ₃) ₄	2.382	4.15	11.99	10.86	0.59

SI Table 6: Average value of Wiberg bond Indices for metal-ligand and metal nitrate bonding.

System	M-O(-C=O _{DGA})	M-O(-ether O _{DGA})	M-O (NO ₃)
UO ₂ (NO ₃) ₂ -L	0.334	0	0.461
Th(NO ₃) ₄ -L	0.369	0.073	0.431