Yellow to blue switching of fluorescence by the tuning of the pentaphenylphosphole structure: phosphorus electronic state vs. ring conjugation

Ruslan R. Shaydullin,^a Alexey S. Galushko,^a Evgeniy O. Pentsak,^a Vladislav M. Korshunov,^b Ilya V. Taydakov,^b Evgeniy G. Gordeev,^a Mikhail E. Minyaev,^a Darina I. Nasyrova^a and Valentine P. Ananikov^{*a}

^aZelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia

^bLebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia

E-mail: val@ioc.ac.ru; https://AnanikovLab.ru

Synthesis of PPP, PPPO and H ₂ PPPO	
NMR characterization	
UV-vis and fluorescence spectra	S3
ESI-MS	S5
X-ray crystallographic data and refinement details	S5
The structure of PPPO	S8
The structure of H ₂ PPPO	
Theoretical Calculations	
Literature references:	\$39

*Synthesis of PPP, PPPO and H*₂*PPPO* PPP was obtained according to previously described methods.^{1,2}.

The first steps in the synthesis of 1,2,3,4,5-pentaphenylphospholoxide (PPPO) and 1,2,3,4,5-pentaphenyl-2,5-dihydrophospholoxide (H₂PPPO) coincide with the synthesis of 1,2,3,4,5-pentaphenylphosphol (PPP).

Diphenylacetylene (2.67 g, 15 mmol) was dissolved in dry diethyl ether, and lithium (0.14 g, 20 mmol) was added to a Schlenk flask under argon. In this case, the dimerization of alkynes occurred with the appearance of a dark scarlet color of the solution. The reaction proceeded in an argon atmosphere for 5 hours. At the end of the reaction, the solution was filtered. Dichlorophenylphosphine (1.34 g, 7.5 mmol) in dry ether at 0 °C was added to the solution with organolithium compound (Scheme 1). The solution turned green, and lithium chloride precipitated out. The mixture was left for 24 hours after filtration, and the ether was removed under reduced pressure. The target product was obtained with a yield of 60%.

Scheme S1. Synthesis of PPP

To obtain PPPO and H_2 PPPO, an additional stage of interaction of PPP with hydrogen peroxide in ethanol was carried out (Scheme 2). The dried reaction mixture of PPP was dissolved in 50 ml of ethanol, and then 0.935 ml of H_2O_2 was added dropwise, followed by stirring for 3 hours. The solvent was removed, and the resulting mixture was separated by gradient column chromatography.

Scheme S2. Synthesis of PPPO and H₂PPPO.

The product mixture contained two fractions, one of which corresponded to PPPO and showed yellow fluorescence, and H₂PPPO, which showed intense blue fluorescence. After isolation, the PPPO yield was 40%, and the H₂PPPO yield was 12%.

NMR characterization

¹H and ¹³C NMR spectra were obtained with a Bruker Fourier 300 HD NMR spectrometer (at frequencies of 300.1 and 75.5 MHz, respectively) in CDCl₃ solutions. Residual protons in CDCl₃ were used as internal standards. ³¹P-NMR spectra were recorded on a Bruker DRX500 instrument (the frequencies for ³¹P were 202.45 MHz) in CDCl₃. Eighty-five percent H₃PO₄ was used as a standard.

UV-vis and fluorescence spectra

UV-visible spectra at ambient temperature were recorded on a Varian Cary 5000 spectrophotometer. Luminescence and emission excitation spectra as well as the luminescence decays were recorded on a Fluorolog-QM-75-22-C spectrofluorometer equipped with a Hamamatsu R13456 cooled photomultiplier tube sensitive in the UV-Vis-NIR region (200-950 nm). All necessary instrument correction functions were applied for all spectra. Quantum yields were determined by the absolute method with the use of a G8 (GMP, Switzerland) integrating sphere placed into a Fluorolog QM spectrofluorometer. The measurements were conducted according to the procedure described previously.³

Figure S1. UV-Vis spectra.

Figure S2. Luminescence excitation spectra for H₂PPPO and PPP in solution MeCN.

Figure S3. Normalized low-energy absorption band and normalized fluorescence spectra for H_2 PPPO.

Figure S4. Fluorescence and phosphorescence spectra for H₂PPPO.

Figure S5. Luminescence spectra for H₂PPPO in different solutions.

ESI-MS

High-resolution ESI mass spectra were obtained with a Bruker maXis Q-TOF instrument. Measurements were carried out in positive ion mode (capillary voltage 4500 V, external calibration (electrospray calibration solution, Fluka)). The mass scan range was set to m/z 50—1500 Da. A syringe pump was used for the direct inlet of a solution of the analyte in acetonitrile (3 μ L min⁻¹). Nitrogen was used as both the nebulizer gas (1.2 bar) and carrier gas (4.0 L min⁻¹, 200 °C). Experimental data were processed using Bruker DataAnalysis 4.0 software.

Figure S6. ESI-MS spectrum of H₂PPPO

X-ray crystallographic data and refinement details.

X-ray diffraction data were collected on a Bruker Quest D8 diffractometer equipped with a Photon-III area detector (shutterless φ - and ω -scan technique) using graphite-monochromatized Mo K_{α}-radiation (λ =0.71073 Å). The intensity data were integrated by the SAINT program⁴ and semiempirically corrected from equivalent reflections for absorption and decay with SADABS.⁵

The structures were solved by direct methods using SHELXT⁶ and refined by the full-matrix least-squares on F^2 using SHELXL.⁷ All nonhydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms, including were placed in ideal calculated positions (C-H distance = 0.950 Å for aromatic, 0.990 Å for methylene and 1.000 Å for tertiary hydrogen atoms) and refined as riding atoms with relative isotropic displacement parameters. (1.2 U_{eq}(C) for hydrogen atoms). In PPPO, the U_{ij} components of anisotropic displacement parameters for atom C1 were restrained to approximate isotropic behavior. Crystal data, data collection and structure refinement details are summarized in Table S1.

Identification code	PPPO	H ₂ PPPO
Empirical formula	C ₃₄ H ₂₅ OP	C ₃₄ H ₂₇ OP
Formula weight	480.51	482.52
Temperature (K)	100(2)	100(2)
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$
Unit cell dimensions		
a (Å)	16.0559(6)	11.6191(6)
b (Å)	6.2918(2)	5.9902(4)
c (Å)	24.2227(10)	35.856(2)
α (°)	90	90
β (°)	92.7170(10)	90.762(4)
γ (°)	90	90
Volume (Å ³)	2444.24(16)	2495.4(3)
Z	4	4
Calcd density (g/cm ³)	1.306	1.284
μ (mm ⁻¹)	0.139	0.136
F(000)	1008	1016
Crystal size (mm)	$0.1 \times 0.05 \times 0.05$	$0.1 \times 0.05 \times 0.05$
θ range (°)	2.060-30.033	2.076-26.500
Index ranges	-22<=h<=22,	-13<=h<=14,
	-8<=k<=8,	-7<=k<=7,
	-34<=l<=30	-45<=l<=45
Reflections		
collected	49922	45348
independent [R _{int}]	7133 [0.0544]	5191 [0.2032]
observed	5580	2721
Completeness to θ_{max}	0.998	1.000
T _{max} / T _{min}	0.7468 / 0.7029	0.7461 / 0.6140

Table S1. Crystal data, data collection and structure refinement details

Restraints / parameters	7133 / 0 / 325	5191 / 6 / 325
Goodness-of-fit on F^2	1.096	1.041
R1 / wR2 [I>2o(I)]	0.0543 / 0.1230	0.0879/0.1826
R1 / wR2 (all data)	0.0753/0.1378	0.1758 / 0.2302
$\Delta \rho_{max}$ / $\Delta \rho_{min}$ (\bar{e} ·Å ⁻³)	0.401 / -0.384	0.829 / -0.699
CCDC number	2095821	2095822

Figure S7. The molecular structure of **PPPO**. Thermal ellipsoids are set to a 50% probability level.

Atoms	Distance	Atoms	Distance	Atoms	Distance
P(1)-O(1)	1.4882(15)	C(5)-C(10)	1.399(3)	C(17)-C(22)	1.396(3)
P(1)-C(5)	1.7947(19)	C(6)-C(7)	1.389(3)	C(18)-C(19)	1.395(3)
P(1)-C(4)	1.8043(19)	C(7)-C(8)	1.387(3)	C(19)-C(20)	1.386(3)
P(1)-C(1)	1.8134(19)	C(8)-C(9)	1.380(3)	C(20)-C(21)	1.384(3)
C(1)-C(2)	1.354(3)	C(9)-C(10)	1.391(3)	C(21)-C(22)	1.393(3)
C(1)-C(11)	1.471(3)	C(11)-C(16)	1.398(3)	C(23)-C(28)	1.397(3)
C(2)-C(17)	1.493(3)	C(11)-C(12)	1.406(3)	C(23)-C(24)	1.398(3)
C(2)-C(3)	1.507(3)	C(12)-C(13)	1.390(3)	C(24)-C(25)	1.389(3)
C(3)-C(4)	1.358(3)	C(13)-C(14)	1.380(4)	C(25)-C(26)	1.386(3)
C(3)-C(23)	1.488(3)	C(14)-C(15)	1.388(4)	C(26)-C(27)	1.383(3)
C(4)-C(29)	1.476(3)	C(15)-C(16)	1.389(3)	C(27)-C(28)	1.391(3)
C(5)-C(6)	1.393(3)	C(17)-C(18)	1.395(3)	C(29)-C(34)	1.400(3)

Table S2. Selected bond distances for **PPPO** (Å).

Table S3.	Selected	bond	angles f	for PPP	O (°).	

Atoms	Angle	Atoms	Angle
O(1)-P(1)-C(5)	111.53(9)	C(16)-C(11)-C(1)	122.59(19)
O(1)-P(1)-C(4)	117.12(9)	C(12)-C(11)-C(1)	119.28(18)
C(5)-P(1)-C(4)	109.29(9)	C(13)-C(12)-C(11)	120.8(2)
O(1)-P(1)-C(1)	115.77(9)	C(14)-C(13)-C(12)	120.3(2)
C(5)-P(1)-C(1)	108.14(9)	C(13)-C(14)-C(15)	119.5(2)
C(4)-P(1)-C(1)	93.48(9)	C(14)-C(15)-C(16)	120.6(2)
C(2)-C(1)-C(11)	130.08(17)	C(15)-C(16)-C(11)	120.6(2)
C(2)-C(1)-P(1)	108.67(14)	C(18)-C(17)-C(22)	118.77(18)
C(11)-C(1)-P(1)	121.24(14)	C(18)-C(17)-C(2)	122.49(18)
C(1)-C(2)-C(17)	124.58(17)	C(22)-C(17)-C(2)	118.74(18)
C(1)-C(2)-C(3)	114.34(16)	C(17)-C(18)-C(19)	120.3(2)
C(17)-C(2)-C(3)	120.68(16)	C(20)-C(19)-C(18)	120.3(2)
C(4)-C(3)-C(23)	122.96(17)	C(21)-C(20)-C(19)	119.67(19)
C(4)-C(3)-C(2)	114.80(16)	C(20)-C(21)-C(22)	120.2(2)
C(23)-C(3)-C(2)	121.98(16)	C(21)-C(22)-C(17)	120.6(2)
C(3)-C(4)-C(29)	129.40(17)	C(28)-C(23)-C(24)	119.21(18)
C(3)-C(4)-P(1)	108.53(14)	C(28)-C(23)-C(3)	118.58(17)
C(29)-C(4)-P(1)	122.05(14)	C(24)-C(23)-C(3)	122.15(18)
C(6)-C(5)-C(10)	120.10(18)	C(25)-C(24)-C(23)	119.73(19)
C(6)-C(5)-P(1)	122.74(15)	C(26)-C(25)-C(24)	120.78(19)
C(10)-C(5)-P(1)	117.12(15)	C(27)-C(26)-C(25)	119.78(19)
C(7)-C(6)-C(5)	119.4(2)	C(26)-C(27)-C(28)	120.06(19)
C(8)-C(7)-C(6)	120.3(2)	C(27)-C(28)-C(23)	120.44(19)
C(9)-C(8)-C(7)	120.6(2)	C(34)-C(29)-C(30)	118.73(17)
C(8)-C(9)-C(10)	119.7(2)	C(34)-C(29)-C(4)	118.99(17)
C(9)-C(10)-C(5)	119.8(2)	C(30)-C(29)-C(4)	122.22(17)
C(16)-C(11)-C(12)	118.07(19)	C(31)-C(30)-C(29)	120.18(18)

Table S4. Torsion angles for $\ensuremath{\textbf{PPPO}}$ (°).

Atoms	Angle	Atoms	Angle
O(1)-P(1)-C(1)-C(2)	-118.58(14)	C(1)-C(11)-C(12)-C(13)	177.6(2)
C(5)-P(1)-C(1)-C(2)	115.47(15)	C(11)-C(12)-C(13)-C(14)	-0.3(4)
C(4)-P(1)-C(1)-C(2)	3.87(15)	C(12)-C(13)-C(14)-C(15)	-0.1(4)
O(1)-P(1)-C(1)-C(11)	60.16(18)	C(13)-C(14)-C(15)-C(16)	0.4(4)
C(5)-P(1)-C(1)-C(11)	-65.79(17)	C(14)-C(15)-C(16)-C(11)	-0.2(4)
C(4)-P(1)-C(1)-C(11)	-177.39(16)	C(12)-C(11)-C(16)-C(15)	-0.2(3)

C(11)-C(1)-C(2)-C(17)	-8.8(3)	C(1)-C(11)-C(16)-C(15)	-177.3(2)
P(1)-C(1)-C(2)-C(17)	169.78(15)	C(1)-C(2)-C(17)-C(18)	113.0(2)
C(11)-C(1)-C(2)-C(3)	178.44(19)	C(3)-C(2)-C(17)-C(18)	-74.7(2)
P(1)-C(1)-C(2)-C(3)	-3.0(2)	C(1)-C(2)-C(17)-C(22)	-66.5(3)
C(1)-C(2)-C(3)-C(4)	0.1(2)	C(3)-C(2)-C(17)-C(22)	105.8(2)
C(17)-C(2)-C(3)-C(4)	-172.93(17)	C(22)-C(17)-C(18)-C(19)	-1.2(3)
C(1)-C(2)-C(3)-C(23)	174.51(17)	C(2)-C(17)-C(18)-C(19)	179.28(19)
C(17)-C(2)-C(3)-C(23)	1.5(3)	C(17)-C(18)-C(19)-C(20)	-0.3(3)
C(23)-C(3)-C(4)-C(29)	7.3(3)	C(18)-C(19)-C(20)-C(21)	1.4(3)
C(2)-C(3)-C(4)-C(29)	-178.37(18)	C(19)-C(20)-C(21)-C(22)	-1.1(3)
C(23)-C(3)-C(4)-P(1)	-171.53(15)	C(20)-C(21)-C(22)-C(17)	-0.4(3)
C(2)-C(3)-C(4)-P(1)	2.8(2)	C(18)-C(17)-C(22)-C(21)	1.5(3)
O(1)-P(1)-C(4)-C(3)	117.59(14)	C(2)-C(17)-C(22)-C(21)	-178.95(18)
C(5)-P(1)-C(4)-C(3)	-114.38(14)	C(4)-C(3)-C(23)-C(28)	62.4(3)
C(1)-P(1)-C(4)-C(3)	-3.78(15)	C(2)-C(3)-C(23)-C(28)	-111.5(2)
O(1)-P(1)-C(4)-C(29)	-61.35(18)	C(4)-C(3)-C(23)-C(24)	-114.6(2)
C(5)-P(1)-C(4)-C(29)	66.69(17)	C(2)-C(3)-C(23)-C(24)	71.5(2)
C(1)-P(1)-C(4)-C(29)	177.28(16)	C(28)-C(23)-C(24)-C(25)	0.3(3)
O(1)-P(1)-C(5)-C(6)	172.42(16)	C(3)-C(23)-C(24)-C(25)	177.32(17)
C(4)-P(1)-C(5)-C(6)	41.33(19)	C(23)-C(24)-C(25)-C(26)	-0.2(3)
C(1)-P(1)-C(5)-C(6)	-59.18(19)	C(24)-C(25)-C(26)-C(27)	0.1(3)
O(1)-P(1)-C(5)-C(10)	-9.64(18)	C(25)-C(26)-C(27)-C(28)	-0.1(3)
C(4)-P(1)-C(5)-C(10)	-140.73(15)	C(26)-C(27)-C(28)-C(23)	0.2(3)
C(1)-P(1)-C(5)-C(10)	118.76(16)	C(24)-C(23)-C(28)-C(27)	-0.3(3)
C(10)-C(5)-C(6)-C(7)	-1.9(3)	C(3)-C(23)-C(28)-C(27)	-177.42(17)
P(1)-C(5)-C(6)-C(7)	175.94(17)	C(3)-C(4)-C(29)-C(34)	-145.9(2)
C(5)-C(6)-C(7)-C(8)	0.8(3)	P(1)-C(4)-C(29)-C(34)	32.8(2)
C(6)-C(7)-C(8)-C(9)	0.9(4)	C(3)-C(4)-C(29)-C(30)	36.9(3)
C(7)-C(8)-C(9)-C(10)	-1.5(3)	P(1)-C(4)-C(29)-C(30)	-144.42(16)
C(8)-C(9)-C(10)-C(5)	0.3(3)	C(34)-C(29)-C(30)-C(31)	0.9(3)
C(6)-C(5)-C(10)-C(9)	1.4(3)	C(4)-C(29)-C(30)-C(31)	178.12(17)
P(1)-C(5)-C(10)-C(9)	-176.61(16)	C(29)-C(30)-C(31)-C(32)	-1.1(3)
C(2)-C(1)-C(11)-C(16)	-32.6(3)	C(30)-C(31)-C(32)-C(33)	0.7(3)
P(1)-C(1)-C(11)-C(16)	148.95(17)	C(31)-C(32)-C(33)-C(34)	-0.2(3)
C(2)-C(1)-C(11)-C(12)	150.3(2)	C(32)-C(33)-C(34)-C(29)	0.1(3)
P(1)-C(1)-C(11)-C(12)	-28.1(3)	C(30)-C(29)-C(34)-C(33)	-0.4(3)
C(16)-C(11)-C(12)-C(13)	0.4(3)	C(4)-C(29)-C(34)-C(33)	-177.73(18)

Table S5. Atom deviations from the flat PC_4 cycle (atoms P1, C1..C4) in **PPPO** (Å).

Atom	P1	C1	C2	C3	C4		
Deviation*	-0.0245(8)	0.0249(11)	-0.0129(12)	-0.0117(12)	0.0242(11)		
* // signs state for deviations in different directions							

+/- signs state for deviations in different directions.

Tabla	CC	Dihadral	amala	hatryaan	the DC	h and	DL	mlamaa	:		101	۱.
rable	50.	Difference	angle	Detween	the PU	лано	PII	Dianes.	III I	FFFU	(I.
	~ ~ .					4		p			\	, ·

Phenyl	C11C16	C17C22	C23C28	C29C34
Deviation	30.633(83)	70.406(59)	65.859(65)	34.927(68)

The structure of H₂PPPO

Figure S8. The molecular structure of H_2 PPPO. Thermal ellipsoids are set to a 50% probability level.

Atoms	Distance	Atoms	Distance	Atoms	Distance
P(1)-O(1)	1.489(4)	C(6)-C(7)	1.392(7)	C(19)-C(20)	1.376(8)
P(1)-C(1)	1.761(5)	C(7)-C(8)	1.376(7)	C(20)-C(21)	1.374(7)
P(1)-C(5)	1.795(5)	C(8)-C(9)	1.373(8)	C(21)-C(22)	1.400(7)
P(1)-C(4)	1.837(5)	C(9)-C(10)	1.384(7)	C(23)-C(28)	1.386(8)
C(1)-C(2)	1.544(6)	C(11)-C(12)	1.380(8)	C(23)-C(24)	1.394(7)
C(1)-C(11)	1.576(7)	C(11)-C(16)	1.394(7)	C(24)-C(25)	1.370(7)
C(2)-C(3)	1.346(7)	C(12)-C(13)	1.390(7)	C(25)-C(26)	1.383(9)
C(2)-C(17)	1.495(6)	C(13)-C(14)	1.385(8)	C(26)-C(27)	1.390(9)
C(3)-C(23)	1.479(7)	C(14)-C(15)	1.360(9)	C(27)-C(28)	1.390(7)
C(3)-C(4)	1.539(6)	C(15)-C(16)	1.402(8)	C(29)-C(30)	1.384(7)
C(4)-C(29)	1.516(6)	C(17)-C(18)	1.389(7)	C(29)-C(34)	1.390(7)
C(5)-C(6)	1.391(8)	C(17)-C(22)	1.393(8)	C(30)-C(31)	1.392(7)
C(5)-C(10)	1.396(7)	C(18)-C(19)	1.394(6)	C(31)-C(32)	1.390(8)

Table S7. Selected bond distances for H_2PPPO (Å).

Table S8. Selected bond angles for H_2PPPO (°).

Atoms	Angle	Atoms	Angle
O(1)-P(1)-C(1)	109.2(2)	C(12)-C(11)-C(1)	122.2(5)
O(1)-P(1)-C(5)	112.3(2)	C(16)-C(11)-C(1)	119.1(5)
C(1)-P(1)-C(5)	114.2(2)	C(11)-C(12)-C(13)	121.3(5)
O(1)-P(1)-C(4)	115.6(2)	C(14)-C(13)-C(12)	119.3(6)
C(1)-P(1)-C(4)	95.5(2)	C(15)-C(14)-C(13)	120.5(6)
C(5)-P(1)-C(4)	109.0(3)	C(14)-C(15)-C(16)	120.4(5)
C(2)-C(1)-C(11)	110.4(4)	C(11)-C(16)-C(15)	119.9(6)
C(2)-C(1)-P(1)	103.5(3)	C(18)-C(17)-C(22)	118.3(4)
C(11)-C(1)-P(1)	117.4(3)	C(18)-C(17)-C(2)	122.1(5)
C(3)-C(2)-C(17)	126.9(5)	C(22)-C(17)-C(2)	119.5(5)
C(3)-C(2)-C(1)	114.9(4)	C(17)-C(18)-C(19)	120.6(5)
C(17)-C(2)-C(1)	118.1(4)	C(20)-C(19)-C(18)	120.4(5)
C(2)-C(3)-C(23)	126.2(4)	C(21)-C(20)-C(19)	120.0(5)
C(2)-C(3)-C(4)	115.8(4)	C(20)-C(21)-C(22)	119.8(5)
C(23)-C(3)-C(4)	118.0(4)	C(17)-C(22)-C(21)	120.8(5)
C(29)-C(4)-C(3)	117.1(4)	C(28)-C(23)-C(24)	118.0(5)
C(29)-C(4)-P(1)	113.2(4)	C(28)-C(23)-C(3)	120.0(5)
C(3)-C(4)-P(1)	101.1(3)	C(24)-C(23)-C(3)	122.0(5)
C(6)-C(5)-C(10)	119.7(5)	C(25)-C(24)-C(23)	121.8(6)
C(6)-C(5)-P(1)	124.6(4)	C(24)-C(25)-C(26)	119.8(6)

C(10)-C(5)-P(1)	115.6(4)	C(25)-C(26)-C(27)	119.9(5)
C(5)-C(6)-C(7)	119.5(5)	C(26)-C(27)-C(28)	119.6(6)
C(8)-C(7)-C(6)	120.8(5)	C(23)-C(28)-C(27)	121.0(6)
C(9)-C(8)-C(7)	119.4(5)	C(30)-C(29)-C(34)	118.7(4)
C(8)-C(9)-C(10)	121.3(5)	C(30)-C(29)-C(4)	120.2(5)
C(9)-C(10)-C(5)	119.3(6)	C(34)-C(29)-C(4)	121.0(5)
C(12)-C(11)-C(16)	118.7(5)	C(29)-C(30)-C(31)	121.3(5)

Table S9.	Torsion	angles	for	H ₂ PPPO	(°)).
-----------	---------	--------	-----	---------------------	-----	----

Atoms	Angle	Atoms	Angle
O(1)-P(1)-C(1)-C(2)	-92.6(4)	C(1)-C(11)-C(12)-C(13)	-179.0(4)
C(5)-P(1)-C(1)-C(2)	140.7(3)	C(11)-C(12)-C(13)-C(14)	0.3(8)
C(4)-P(1)-C(1)-C(2)	26.9(4)	C(12)-C(13)-C(14)-C(15)	0.1(8)
O(1)-P(1)-C(1)-C(11)	145.5(4)	C(13)-C(14)-C(15)-C(16)	-0.5(8)
C(5)-P(1)-C(1)-C(11)	18.8(5)	C(12)-C(11)-C(16)-C(15)	0.1(7)
C(4)-P(1)-C(1)-C(11)	-94.9(4)	C(1)-C(11)-C(16)-C(15)	178.7(4)
C(11)-C(1)-C(2)-C(3)	107.0(5)	C(14)-C(15)-C(16)-C(11)	0.4(8)
P(1)-C(1)-C(2)-C(3)	-19.5(6)	C(3)-C(2)-C(17)-C(18)	-44.4(8)
C(11)-C(1)-C(2)-C(17)	-68.9(6)	C(1)-C(2)-C(17)-C(18)	130.8(5)
P(1)-C(1)-C(2)-C(17)	164.7(4)	C(3)-C(2)-C(17)-C(22)	139.3(6)
C(17)-C(2)-C(3)-C(23)	-3.6(9)	C(1)-C(2)-C(17)-C(22)	-45.4(7)
C(1)-C(2)-C(3)-C(23)	-179.0(5)	C(22)-C(17)-C(18)-C(19)	-0.8(7)
C(17)-C(2)-C(3)-C(4)	174.3(5)	C(2)-C(17)-C(18)-C(19)	-177.1(4)
C(1)-C(2)-C(3)-C(4)	-1.1(7)	C(17)-C(18)-C(19)-C(20)	0.3(7)
C(2)-C(3)-C(4)-C(29)	143.4(5)	C(18)-C(19)-C(20)-C(21)	-0.2(8)
C(23)-C(3)-C(4)-C(29)	-38.5(7)	C(19)-C(20)-C(21)-C(22)	0.6(8)
C(2)-C(3)-C(4)-P(1)	20.0(5)	C(18)-C(17)-C(22)-C(21)	1.2(8)
C(23)-C(3)-C(4)-P(1)	-161.9(4)	C(2)-C(17)-C(22)-C(21)	177.6(5)
O(1)-P(1)-C(4)-C(29)	-38.8(4)	C(20)-C(21)-C(22)-C(17)	-1.1(8)
C(1)-P(1)-C(4)-C(29)	-153.1(4)	C(2)-C(3)-C(23)-C(28)	135.1(6)
C(5)-P(1)-C(4)-C(29)	88.8(4)	C(4)-C(3)-C(23)-C(28)	-42.7(6)
O(1)-P(1)-C(4)-C(3)	87.3(3)	C(2)-C(3)-C(23)-C(24)	-45.3(8)
C(1)-P(1)-C(4)-C(3)	-27.1(4)	C(4)-C(3)-C(23)-C(24)	136.9(5)
C(5)-P(1)-C(4)-C(3)	-145.1(3)	C(28)-C(23)-C(24)-C(25)	-0.6(7)
O(1)-P(1)-C(5)-C(6)	173.4(4)	C(3)-C(23)-C(24)-C(25)	179.8(4)
C(1)-P(1)-C(5)-C(6)	-61.6(5)	C(23)-C(24)-C(25)-C(26)	0.4(8)
C(4)-P(1)-C(5)-C(6)	43.9(5)	C(24)-C(25)-C(26)-C(27)	-0.1(8)
O(1)-P(1)-C(5)-C(10)	-6.1(5)	C(25)-C(26)-C(27)-C(28)	0.1(8)

C(1)-P(1)-C(5)-C(10)	119.0(4)	C(24)-C(23)-C(28)-C(27)	0.5(7)
C(4)-P(1)-C(5)-C(10)	-135.6(4)	C(3)-C(23)-C(28)-C(27)	-179.9(4)
C(10)-C(5)-C(6)-C(7)	-0.7(7)	C(26)-C(27)-C(28)-C(23)	-0.3(7)
P(1)-C(5)-C(6)-C(7)	179.9(4)	C(3)-C(4)-C(29)-C(30)	124.7(5)
C(5)-C(6)-C(7)-C(8)	0.4(8)	P(1)-C(4)-C(29)-C(30)	-118.3(5)
C(6)-C(7)-C(8)-C(9)	-0.1(8)	C(3)-C(4)-C(29)-C(34)	-58.5(7)
C(7)-C(8)-C(9)-C(10)	0.1(7)	P(1)-C(4)-C(29)-C(34)	58.5(5)
C(8)-C(9)-C(10)-C(5)	-0.4(7)	C(34)-C(29)-C(30)-C(31)	-1.2(7)
C(6)-C(5)-C(10)-C(9)	0.7(7)	C(4)-C(29)-C(30)-C(31)	175.6(5)
P(1)-C(5)-C(10)-C(9)	-179.8(4)	C(29)-C(30)-C(31)-C(32)	0.1(8)
C(2)-C(1)-C(11)-C(12)	-21.4(6)	C(30)-C(31)-C(32)-C(33)	1.2(8)
P(1)-C(1)-C(11)-C(12)	96.8(5)	C(31)-C(32)-C(33)-C(34)	-1.3(8)
C(2)-C(1)-C(11)-C(16)	160.0(4)	C(32)-C(33)-C(34)-C(29)	0.3(8)
P(1)-C(1)-C(11)-C(16)	-81 8(5)	C(30)-C(29)-C(34)-C(33)	1.0(7)
C(16)-C(11)-C(12)-C(13)	-0.5(7)	C(4)-C(29)-C(34)-C(33)	-175.8(4)

Table S10. Atoms deviations from the plane defined by atoms C1..C4, C17 and C23 in **PPPO** (Å).

Atom	C1	C2	C3	C4	C17	C23
Deviation*	-0.0129(33)	-0.0310(47)	-0.0192(46)	0.0362(34)	0.0369(31)	-0.0100(31)
* +/- signs sta	te for deviation	ns in different	directions.			

The dihedral angles for the planes defined by atoms C1..C4, C17, C23 and Ph rings are 45.45(19)° for Ph=C17..C22, 45.41(17)° for Ph=C23..C28.

Noncovalent packing effects do not seem to influence the structures – only a few negligible intermolecular interactions are observed: C-HPh··H-CPh, C-HPh··CPh, C-HPh··O for H₂PPPO/H₂PPPO, and C4-H4··O for H₂PPPO. Therefore, the structures H₂PPPO and H₂PPPO are nearly unperturbed by the intermolecular interactions in the crystalline state.

Theoretical Calculations

Geometry optimization for PPP, PPPO and H₂PPPO and vibrational frequency calculations were performed using the B3LYP^{8,9,10} hybrid functional and $6-31+G(d)^{11,12,13,14,15}$ basis set, the D3 version of Grimme's dispersion with Becke-Johnson damping (GD3BJ)^{16,17} and the polarizable continuum model of MeCN in Gaussian16¹⁸. For all optimized structures, all frequencies of the vibrational spectrum were positive.

The calculated absorption and emission peaks of PPP, PPPO and H₂PPPO by means of the timedependent density functional theory (TDDFT) method and the ω B97X-D¹⁹/def2SVP²⁰ scrf=(solvent=acetonitrile,pcm)^{21,22} level agree well with the experimental results. Naturaltransition-orbital (NTO)²³ calculations were performed for the first three transitions.

To analyze the degree of aromaticity of the five-membered P-heterocycles of the phosphole, H_2PPPO , PPPO and PPP molecules, the HOMA (Harmonic Oscillator Model of Aromaticity)^{24,25} values were calculated using the MultiWFN software package²⁶. Preliminarily the molecular structure of all compounds was optimized by the B3LYP method in combination with the 6-31+G(d) basis set. Since the H₂PPPO, PPPO, and PPP molecules contain a large number of phenyl groups actively participating in the stacking interaction, the empirical D3BJ corrections were used to more accurately describe the dispersion interaction. The effect of the solvent on the molecular structure of the compounds was taken into account using the PCM continuum model (solvent - acetonitrile).

Another parameter used in this work to quantify aromaticity is NICS(0) (Nucleus-Independent Chemical Shifts)²⁷ which characterizes the degree of shielding at a point located within the fivemembered cycle. As such a point, we chose a cyclic critical point of the type (3; +1), localized as a result of the analysis of the topology of the total electron density in the framework of the quantum theory of atoms in molecules (QTAIM)²⁸. QTAIM analysis was performed by AIMAll software²⁹. The calculation of the NICS(0) values was performed for the optimized structures in the same B3LYP/6-31+G(d) D3BJ level of theory that was used to calculate the HOMA values. 1,2,3,4,5-pentaphenylphosphole (PPP)

Table S11. Oscillator strength of PPP.

Excitation. UV-Vis spectrum	n, λ (oscillator strength)	Emission. UV-Vis spectrum, λ	(oscillator strength)	Experiment
UV-Vis Spectrum 18 000 つ	3) 255 nm (0.23)	UV-Vis Spectrum	3) 304 nm (0.42)	Absorption: 217 nm,
16 000 0,3 S	2) 277 nm (0.31)		2) 328 nm (0.28)	257 nm, 360 nm
	1) 330 nm (0.25)		1) 513 nm (0.53)	Emission: 473 nm
100 150 200 250 300 350 400 450 500 Wavelength (nm)		Wavelength (nm)		
Excited State 1:	330.00 nm f=0.2490	Excited State 1:	512.80 nm f=0.5337	
Excited State 1.	122 ->123 0.68379	Excited State 1.	122 ->123 0.69666	
	277.23 nm f=0.3137		328.03 nm f=0.2803	
	112 ->123 0.10275		112 ->123 0.14145	
Excited State 2:	119 ->123 -0.20863	Excited State 2:	114 ->123 -0.10049	
	120 ->123 -0.22180		120 ->123 -0.40468	
	121 ->123 0.59336		121 ->123 0.50491	
Evolted State 2	254.71 nm f=0.2259	Excited State 2	304.21 nm f=0.4160	
Exclied State 5:	119 ->123 0.14195	Exclied State 5:	120 ->123 0.42136	

120 ->123	0.44202	121 ->123	0.41898	
121 ->123	0.26588	122 ->124	0.28603	I
122 ->124	0.30335	122 ->125	0.16412	
122 ->125	0.22919			
122 ->127	0.10115			

NTO analysis

for optimized geometry of PPP:

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=1)

for optimized geometry of PPP:

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=2)

Figure S11. Molecular orbitals of PPP.

for optimized geometry of PPP:

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=3)

Figure S12. Molecular orbitals of PPP.

1,2,3,4,5-pentaphenylphospholoxide (PPPO)

Table S12. Oscillator strength of PPPO.

Excitation. UV-Vis spectrum,	λ (oscillator strength)	Emission. UV-Vis spectrum, λ ((oscillator strength)	Experiment
UV-Vis Spectrum 16 000 10 000 4 000 2 000 0 10 150 200 250 300 350 400 450 500 550 Wavelength (nm)	3) 279 nm (0.07) 2) 283 nm (0.29) 1) 368 nm (0.23)	UV-Vis Spectrum 20000 16 000 14 000 14 000 10 000 0 0 0 0 0 0 0 0 0 0 0 0	3) 326 nm (0.03) 2) 342 nm (0.45) 1) 588 nm (0.39)	Absorption: 205 nm, 257 nm, 380 nm Emission: 539 nm
Excited State 1:	367.50 nm f=0.2267 126 ->127 0.68372	Excited State 1:	587.52 nm f=0.3878 126 ->127 -0.69648	
Excited State 2:	282.83 nmf=0.2887 124 ->127-0.18105125 ->1270.63707	Excited State 2:	342.39 nm f=0.4526 125 ->127 0.68359	
Excited State 3:	279.09 nm f=0.0745 114 ->127 -0.10673	Excited State 3:	326.36 nm f=0.0282 115 ->127 -0.28683	

115 ->127 -0.20874	119 ->127 -0.32418	
120 ->127 -0.23255	121 ->127 -0.12111	
122 ->127 -0.21724	122 ->127 0.38558	
124 ->127 0.48302	124 ->127 0.31186	
125 ->127 0.23151		

NTO analysis

for the optimized geometry of PPPO:

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=1)

for the optimized geometry of PPPO:

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=2)

Figure S15. Molecular orbitals of PPPO.

for the optimized geometry of PPPO:

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=3)

Figure S16. Molecular orbitals of PPPO.

Table S13. Oscillator strength of H₂PPPO.

Excitation. UV-Vis spectrum,	λ (oscillator strength)	Emission. UV-Vis spectrum, λ	(oscillator strength)	Experiment
UV-Vis Spectrum 18 000 14 000 12 000 0 0 0 0 0 0 0 0 0 0 0 0	3) 234 nm (0.01) 2) 240 nm (0.01) 1) 258 nm (0.41)	UV-Vis Spectrum 18 000 14 000 12 000 0 8 000 0 0 00 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 00 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0	3) 279 nm (0.06) 2) 291 nm (0.02) 1) 481 nm (0.41)	Absorption: 225 nm, 257 nm Emission: 429 nm
Excited State 1:	258.46 nm f=0.4115 127 ->128 0.64650 127 ->129 -0.20960	Excited State 1:	481.15 nm f=0.4067 127 ->128 0.70127	
Excited State 2:	239.51 nm f=0.0125121 ->1330.13167121 ->1360.12634	Excited State 2:	291.43 nm f=0.0212 122 ->128 -0.12802 123 ->128 -0.14661	

	122 ->128	0.14772		124 ->128	0.44475
	123 ->128	0.15856		125 ->128	0.19098
	124 ->128	0.26491		126 ->128	-0.19351
	124 ->129	-0.11284		127 ->130	-0.28241
	127 ->130	0.33873		127 ->131	0.18143
	127 ->131	-0.10945		127 ->132	-0.10199
	127 ->134	0.20655		127 ->135	-0.14062
	127 ->135	0.14080			
	233.69 nm f	f=0.0075		279.27 nm	f=0.0579
	118 ->128	-0.15291		124 ->128	0.17295
	119 ->128	0.13546		126 ->128	0.63328
	121 ->128	0.25817			
	121 ->130	0.11822			
	121 ->134	0.11154			
	122 ->134	0.10192			
Excited State 3:	124 ->136	0.11603	Excited State 3:		
	126 ->128	0.14145			
	127 ->132	-0.10099			
	127 ->133	0.21767			
	127 ->135	0.14593			
	127 ->136	0.10948			
	127 ->137	0.20497			

NTO analysis

for the optimized geometry of H₂PPPO:

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=1)

*for the optimized geometry of H*₂*PPPO:*

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=2)

Figure S19. Molecular orbitals of H₂PPPO.

*for the optimized geometry of H*₂*PPPO:*

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=3)

Table S14. Oscillator strength of H₂PPP.

	122 ->124	-0.11483		123 ->124	0.70133
	122 ->125	-0.11089			
	123 ->124	0.65172			
Excited State 2:	246.47 nm	f=0.1957		300.26 nm f=0.0030	
	121 ->124	-0.13979	Excited State 2:	115 ->124	0.10152
	122 ->124	0.52072		121 ->124	-0.17201
	122 ->125	0.29385		122 ->124	0.63942
	123 ->124	0.14940			
	123 ->125	-0.14199			
Excited State 3:	239.03 nm	f=0.0169		289.68 nm f=0.0044	
	114 ->133	0.13038	Excited State 3:	117 ->124	0.15607
	116 ->130	-0.14077		119 ->124	0.44891
	117 ->124	0.13098		121 ->124	-0.18433
	118 ->124	-0.27113		123 ->125	-0.10337
	119 ->124	0.11717		123 ->126	-0.34940
	123 ->125	0.10108		123 ->129	0.19244
	123 ->126	0.33906			
	123 ->129	0.20627			
	123 ->130	0.14452			
	123 ->132	0.10853			

NTO analysis

for the optimized geometry of H_2PPP :

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=1)

for the optimized geometry of H_2PPP :

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=2)

*for the optimized geometry of H*₂*PPP:*

- 1) # td wb97xd scrf=(solvent=acetonitrile,pcm) def2svp
- 2) # wb97xd scrf=(solvent=acetonitrile,pcm) Geom=AllCheck Pop=(Minimal,NTO,saveNTO) def2svp Guess=(Read,Only) Density=(Check,Transition=3)

- ¹ A. S. Galushko, E. G. Gordeev and V. P. Ananikov, *Langmuir*, 2018, **34**, 15739-15748.
- ² B. Z. Tang, X. Zhan, G. Yu, P. P. Sze Lee, Y. Liu and D. Zhu, *J. Mater. Chem.*, 2001, **11**, 2974-2978.
- ³ J.-C. G. Bünzli, S.V. Eliseeva, Lanthanide Luminescence, *Springer Series on Fluorescence*, 2010, **7**, 1-45.
- ⁴ Bruker. *Bruker AXS Inc.*, Madison, Wisconsin, USA, 2021.
- ⁵ L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3-10.
- ⁶ G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3-8.
- ⁷ G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3-8.
- ⁸ A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- ⁹ C. Lee, W. Yang, and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
- ¹⁰ A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- ¹¹ M. M. Francl, W. J. Pietro, W. J. Hehre, J. Chem. Phys., 1982, 77, 3654.
- ¹² W. J. Hehre, R. Ditchfield, and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257.
- ¹³ A. D. McLean, J. Chem. Phys., 1980, 72, 5639.
- ¹⁴ R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650.
- ¹⁵ I. V. Malyar, E. Titov, N. Lomadze, P. Saalfrank, S. Santer, J. Chem. Phys., 2017, 146, 104703.
- ¹⁶ S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- ¹⁷ H. Kruse, S. Grimme, J. Chem. Phys., 2012, **136**, 154101.
- ¹⁸ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
- Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J.
- Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J.
- L. Sonnenberg, D. F. Williams-Young, Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.
- Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
- M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
- Kitao, H. Nakai, T. Vreven, K. Throssell, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J.
- Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J.
- Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M.
- Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
- J. B. Foresman, D. J. Fox, Gaussian 16 Revision C.01, Inc., Wallingford CT, 2016.
- ¹⁹ Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, **10**, 6615–6620.
- ²⁰ Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- ²¹ J. Ingenmey, M. von Domaros, E. Perlt, S. P. Verevkin, B. Kirchner, *J. Chem. Phys.*, 2018, **148**, 193822.

²² B. Thomsen, M. Shiga, J. Chem. Phys., 2021, 154, 084117.

- ²⁵ T.M. Krygowski, J. Chem. Inf. Comput. Sci., 1993, 33, 70–78.
- ²⁶ T. Lu and F. Chen, J. Comput. Chem. 2012, **33**, 580-592.

²⁸ R.F.W. Bader, Atoms in Molecules: A Quantum Theory, *Oxford University Press*, Oxford, 1990.

²⁹ AIMAll (Version 19.10.12), T. A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com).

²³ R. L. Martin, J. Chem. Phys., 2003, **118**, 4775-4777.

²⁴ J. Kruszewski and T.M. Krygowski, *Tetrahedron Lett.*, 1972, **13**, 3839-3842.

²⁷ P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, *J. Am. Chem. Soc.*, 1996, **118**, 6317-6318