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Supporting Figures 
 

 
Fig. S1. The linear regression model performance on four systems. (a) Model performance on 

the KPC-WT/IPM-D1 system; (b) the KPC-WT/IPM-D2 system; (c) the KPC-F72Y/IPM-D1 

system; (d) the KPC-F72Y/IPM-D2 system. R2, MAE, RMSE, nsamples refer to the coefficient of 

determination, the mean absolute error, the root-mean-squared error, and the number of samples, 

respectively.  
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Fig. S2. The performance of the Linear Regression (LR) model on the training and validation set. 

a) The performance of LR model on the training set, where R2, MAE, RMSE, nsamples refers to the 

coefficient of determination, mean absolute error, root mean square error and the number of 

samples, b) The performance of the LR model on the validation set respectively. DEQM/MM refers 

to the barrier energy obtained from QM/MM calculation, while DEML stands for the barrier energy 

predicted by the LR model.   

 

 

  



 4 

 

Fig. S3. The performance of the XGBoost model on the training and validation sets. a) The 

performance of the XGBoost model on the training set, where R2, MAE, RMSE, nsamples refers to 

the coefficient of determination, mean absolute error, root mean square error and the number of 

samples, b) The performance of the XGBoost model on the validation set. DEQM/MM refers to the 

barrier energy obtained from the QM/MM calculations, while DEML stands for the barrier energy 

predicted by the XGBoost model.   
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Fig. S4. The Support Vector Machine (SVM) model performance on the four systems. (a) Model 

performance on the KPC-WT/IPM-D1 system; (b) the KPC-WT/IPM-D2 system; (c) the KPC-

F72Y/IPM-D1 system; (d) the KPC-F72Y/IPM-D2 system. R2, MAE, RMSE, nsamples refer to the 

coefficient of determination, the mean absolute error, the root-mean-squared error, and the number 

of samples, respectively.  
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Fig. S5. The performance of Support Vector Machine (SVM) model on the training and 

validation sets. a) The performance of the SVM model on the training set, where R2, MAE, RMSE, 

nsamples refers to the coefficient of determination, mean absolute error, root mean square error and 

the number of samples, b) The performance of the SVM model on the validation set. DEQM/MM 

refers to the barrier energy obtained from the QM/MM calculations, while DEML stands for the 

barrier energy predicted by the SVM model.   
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Fig. S6. The Neural Network model performance on the four systems. (a) Model performance on 

the KPC-WT/IPM-D1 system; (b) the KPC-WT/IPM-D2 system; (c) the KPC-F72Y/IPM-D1 

system; (d) the KPC-F72Y/IPM-D2 system. R2, MAE, RMSE, nsamples refer to the coefficient of 

determination, the mean absolute error, the root-mean-squared error, and the number of samples, 

respectively.  
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Fig. S7. The performance of the Neural Network (NN) model on the training and validation sets. 

a) The performance of the NN model on the training set, where R2, MAE, RMSE, nsamples refer to 

coefficient of determination, mean absolute error, root mean square error and the number of 

samples, b) The performance of the NN model on the validation set. DEQM/MM refers to the barrier 

energy obtained from the QM/MM calculations, while DEML stands for the barrier energy predicted 

by the neural network model.   
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Fig. S8. Mean absolute SHAP values for the 16 conformational features. Mean absolute SHAP 

values for (a) the KPC-WT/IPM-D1 system; (b) the KPC-WT/IPM-D2 system; (c) the KPC-



 10 

F72Y/IPM-D1 system; and (d) the KPC-F72Y/IPM-D2 system. The rankings of the distances 

follow the attributed importance for each feature. See Fig. 3 
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Fig. S9. The grid search for parameter max_depth and subsample. a) The grid search for the 

training set, values in every block are MAE between the energy calculated by QM/MM method 

and energy predicted by ML method. b) The grid searching process for the validation set. 
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Fig. S10. The grid search for the parameter max_depth and min_child_weight. a) The grid search 

for the training set, values in every block are MAE between barrier energies calculated by the 

QM/MM method and the barrier energies predicted by the ML method. b) The grid searching 

process for the validation set. 

  



 13 

 

Fig. S11. The grid search for the parameter subsample and min_child_weight. a) The grid search 

for the training set, values in every block are  the MAE between barrier energies calculated by the 

QM/MM method and barrier energies predicted by the ML method. b) The grid searching process 

for the validation set. 
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Fig. S12. Active site structure of MEPs with the lowest barrier energy for KPC-F72Y/IPM-

D1(grey) and KPC- F72Y/IPM-D2 (green).  TS refers to transition state (TS). Three important 
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distances (Glu166 Oe2 - Water H1, IPM C7 - Water O, Lys73 Hz1- Ser70 Og), which involve 

proton transfer, and nucleophilic attack, are marked as the black dashed line with Å unit. The 

carbon atoms are colored as gray in KPC-F72Y/IPM-D1 and green in KPC-F72Y/IPM-D2. The 

hydrogen, nitrogen, oxygen, and sulfur atoms are colored as white, blue, red, and yellow 

respectively. The minimum MEPs pathway is number 100 for KPC-F72Y/IPM-D2 and number 

200 for KPC-F72Y/ IPM-D1. 
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Supporting Tables 

Table S1. Average distance (Å) for all features. 
 

Referring 
name Distance name 

KPC-
WT/IPM-

𝚫1 

KPC-
WT/IPM-

𝚫2 

KPC-
F72Y/IPM-

𝚫1 

KPC-
F72Y/IPM-

𝚫2 

d1 Phe72 H𝜁 (Tyr72 H𝜂 ) 
– Glu166 O𝜀2 3.34 3.11 1.66 1.65 

d2 Lys73 H𝜁2 – Glu166 
O𝜀2 2.16 2.02 2.39 2.15 

d3 Water H1 – Glu166 
O𝜀2 1.65 1.65 1.65 1.70 

d4 Water H1 – Glu166 
O𝜀1 2.51 2.42 2.48 2.33 

d5 Asn170 H𝛿2 – Glu166 
O𝜀1 1.92 1.88 1.95 1.87 

d6 Water H2 – Asn170 O𝛿 1.77 1.76 1.79 1.79 

d7 Lys73 H𝜁1 – Water O 2.82 3.11 2.92 3.16 

d8 Lys73 H𝜁2 – Asn132 
O𝛿 1.86 1.91 1.85 1.90 

d9 Water O – IPM C7 2.87 2.80 2.95 2.83 

d10 Lys73 H𝜁1 – Ser70 O𝛾 2.12 2.17 2.07 2.09 

d11 IPM 6𝛼OH – Water O 3.47 3.25 2.87 2.74 

d12 IPM 6𝛼OH – Asn132 
O𝛿 3.61 3.66 3.39 3.35 

d13 IPM 6𝛼OH – Glu166 
O𝜀1 4.17 4.09 3.61 3.20 

d14 IPM 6𝛼OH – Glu166 
O𝜀2 4.59 4.61 4.17 4.02 

d15 Lys73 H𝜁1 – Ser130 
O𝛾 3.08 3.20 2.85 3.06 

d16 Ser130 H𝛾 – IPM N4 1.90 2.59 1.93 2.55 
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XGBoost method hyperparameter grid search 

Max_depth, learning_rate, subsample ratio, and min_child_weight, four hyperparameter 

for XGBoost model training have been investigated to obtain the optimal model to accurately build 

the relationship between conformations’ features and barrier energy.  

Learning rate is the easiest parameter to select due to the fact that too small or too large 

values leads to an unconverged training process. Therefore, 0.1, the default value for the XGBoost 

model, was chosen in the training process.  

Max_depth, the most important parameter, was searched from 1 to 10 to get the optimal 

value. We noticed that the performance of the XGBoost model on the training set gradually 

increases when max_depth gets larger, while the performance shows only modest changes on the 

validation set. Max_depth as 3 and subsample as 0.6 was chosen to avoid the overfitting and 

underfitting problem (Fig. S9). Parameter min_child_weight is not as important as other 

parameters for the XGBoost training (Fig. S11). min_child_weight parameter as 1 was chosen 

because it exhibits the best performance on the validation set.  
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Free energy difference between the imipenem tautomers 

The free energy difference between the KPC-WT/IPM-Δ1 and KPC-WT/IPM-Δ1 tautomer 

states were investigated using the dual-topology DFTB/MM thermodynamic integration (TI) 

scheme. For computational efficiency, the QM region was reduced to include only the Ser70 side 

chain (partitioned between Cα and Cβ) and the entire covalently bonded IPM ligand. We note that 

the active atoms form a neural zwitterion region.  

We replicated the QM region in the system topology (via the CHARMM REPLICATE 

command). The first subsystem (the “reactant”) was set as the KPC-WT/IPM-Δ1 tautomeric state 

and the replicated subsystem (the “product”) as the KPC-WT/IPM-Δ2. The dual topology TI 

simulation were performed using the build-in SCCDFTB module of CHARMM (via the 

SCCDFTB LAMD DTOP command). We note that the dual-topology scheme suffers from the 

end-point instability due to the scaling of the sub-system (and especially the QM) potentials, thus 

long timescale simulations are hardly feasible. We further note that using the default 3ob 

parameters caused the positively charged IPM tails to deform during the dynamics runs. 

Consequently, we used the DFTB3/3ob-f/C36m level of theory, which permits stable covalent 

bonds, for the TI simulations. The order parameters were sampled at λ = 0.1, 0.3, 0.5, 0.7, and 0.9. 

In each sampling window, the dynamics of the perturbed system were propagated at a 1 fs timestep 

for 2.5 ps at each TI step. The gradient of the perturbed system potential to the value of the order 

were collected every 5 fs. The final free energy difference was computed by trapezoidal numerical 

integration. The resulting log files and the dual topology coordinate files (psf and cor) were 

provided in the Zenodo repository (see Data Availability).  

We report that the free energy of the KPC-WT/IPM-Δ1 states is higher by 3.97 kcal mol-1 

than KPC-WT/IPM-Δ2. The free energy difference aligns with the experimental observation that 
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the two tautomeric states were interchangeable since that the tautomerization paths would differ 

only by the reported free energy difference. Also, we expect similar results for the F72Y systems 

since that the mutation points are far from the tautomer rings. Finally, due to limited simulation 

time, this result should be interpreted qualitatively instead of quantitatively.  


