Supplementary Information for High Excellent hydrogen evolution characteristics and novel mechanism of twodimensional tetra-phase OsN₂ and ReN₂

Surface Pourbaix Diagram

In the model of the theoretical standard hydrogen electrode, the surface is regarded in equilibrium with protons and the liquid water at 298 K, so that oxygen, hydroxyl and hydrogen may be exchanged between the surface and the reference electrolyte through the following steps :

$$H_2O + * \to OH^* + H^+ + e^-$$
 (1)

$$H_2O + * \to O^* + 2H^+ + 2e^-$$
 (2)

At finite pH and potential, the free energy changes of the reactions eqn. (1),(2)

 $\Delta G(OH) = \Delta G_0(OH) - eU_{SHE} - k_B T ln 10 \times pH$

 $\Delta G(O) = \Delta G_0(O) - 2eU_{SHE} - 2k_BTln10 \times pH$

respectively, where $\Delta G_0(O)$, $\Delta G_0(OH)$ are the free energy changes of equation (1), (2) at U=0 and pH = 0 respectively. It's the same algorithm as the hydrogen adsorption free energy, as

$$\Delta G_{\rm nOH} = \Delta E_{\rm nOH} + \Delta E_{\rm ZPE} - T\Delta S$$

and

 $\Delta G_{nO} = \Delta E_{nO} + \Delta E_{ZPE} - T\Delta S$ respectively.

Table S1. Charge for each element, average charge and net charge for donor atom. N* denoted as the N-atom attached to H-atom.

System/atom	Re	Ν	N^*	N^*	N^*	N^*	Н	$\Delta G_{\rm H}({\rm eV})$
ReN ₂ +slab	-1.81	0.905						
ReN ₂ +H	-1.775	0.923	1.13				-0.49	-0.11
ReN ₂ +2H	-1.730	0.923	1.11	1.11			-0.42	0.001
ReN ₂ +3H	-1.69	0.927	1.10	1.09	1.09		-0.38	0.25
ReN ₂ +4H	-1.653	0.932	1.12	1.12	1.10	1.10	-0.39	0.27

Fig. S1 Atomic structure of the OsN_2 and ReN_2 . (a) and (b) are top view and side view of OsN_2 monolayer, (c) and (d) are top view and side view of ReN_2 .

Fig. S2 (a) ΔG_H of ReN₂ monolayer under different coverage. Differential charge density diagram before and after hydrogen adsorption, (b) - (e) are adsorption H and 2H, 3H, 4H respectively, with the red/silver/white balls representing Re/N/H (with isosurfaces of 0.01 eV/Å³).

Fig. S3 $\Delta G_{\rm H}$ of double-layer OsN₂ (a) and ReN₂ (b) at different coverage.

Fig. S4 Band structure of (a) OsN2 and (b) ReN2 monolayer Based on HSE06

Table S2 Configurations of OsN_2 from global searches based on CALYPSO package. The configuration of which the HER properties were studied is marked **in bold**.

Configuration	Relative Energy (eV)	Space Group
	0	Pmmm

0.045	P-4m2
0.080955	Pmmm
0.15642	Cm2m
0.34571	C2mm
0.3469	Cm2m

0.53844	Cmmm
0.92264	Cmm2

Table S3 Configurations of ReN_2 from global searches based on CALYPSO package. The configuration of which the HER properties were studied is marked **in bold**.

Configuration	Relative Energy (eV)	Space Group
	0	P-4m2
	0.09	Cm

1.14912	Pm
1.30142	P6mm
1.32866	Pmmm