Supporting Information

Elucidating the Enhanced Decomposition of Alkyl Hydroperoxides on Oxygen Vacancy Rich TiO_{2-x} Surfaces using DFT for Polyethylene Decomposition

Yong Jieh Lee,^a Lutfi Kurnianditia Putri,^a Boon-Junn Ng,^a Lling-Lling Tan,^a Ta Yeong Wu,^a and Siang-Piao Chai^{*a}

^aMultidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.

*Author to whom correspondence should be addressed: <u>chai.siang.piao@monash.edu</u>

1. Computational Methods

Density functional theory (DFT) calculations were performed using Vienna *ab initio* simulation package (VASP).^{1, 2} A 3 x 3 surface slab supercell of TiO₂ and TiO_{2-x} anatase were used for adsorption studies to ensure sufficient separation between adsorbates in adjacent supercells, thus preventing unintended adsorbate-adsorbate interactions. The lattice parameters of the surface slab were a = 10.210 Å, b = 11.328 Å, c = 29.353 Å with a slab thickness of ~8 Å. The {101} facet surface was chosen due to its prevalence on the anatase surface as shown in the Wulff construction,³ and the subsurface oxygen vacancy position was used in the TiO_{2-x} model due to its stability.⁴ Due to the infeasibility of simulating a polyethylene hydroperoxide macromolecule with large number of atoms, sec-pentyl hydroperoxide functional group on the secondary position of the polymer backbone. A vacuum layer of ~20 Å perpendicular to the surface was also employed to prevent spurious interactions between the periodic slabs.

The exchange and correlation potential was described using Perdew-Burke-Ernzerhof (PBE) parameterization of generalized gradient approximation (GGA) level of theory.⁵ The plane wave basis set cut-off energy was set at 520 eV, and pseudopotentials were resolved using projector augmented wave (PAW) frozen core model.^{6, 7} The Brillouin zone was sampled with (3 x 3 x 1) Monkhorst-Pack scheme of kpoint mesh to carry out numerical integration in the reciprocal space.⁸ Computation was performed with criterion of 10⁻⁵ eV and 0.04 eV/Å for electronic self-consistent field calculations and Hellmann-Feynman forces respectively. The adsorption energy (E_{ads}) was calculated according to Eq. 1.

$$E_{ads} = E_{(adsorbate - surface)} - E_{adsorbate} - E_{surface}$$
(1)

where $E_{(adsorbate - surface)}$ is the total energy of sec-pentyl hydroperoxide adsorbed onto the TiO₂ or TiO_{2-x} surface, $E_{adsorbate}$ is the total energy of isolated sec-pentyl hydroperoxide, and $E_{surface}$ is the total energy of the TiO₂ or TiO_{2-x} relaxed surface slab. Bader charge analysis⁹ was performed using Henkelman's code to integrate electron densities per unit atom basins.¹⁰ Transition state and activation energy were also investigated using climbing image nudged elastic band (CI-NEB) method.¹¹

Density of states calculation were converged with more stringent parameters. TiO₂ and TiO_{2-x} surface structures were modelled with a 1 x 3 surface slab having a slab thickness of ~8 Å and a vacuum layer of ~20 Å, with anatase {101} facet and subsurface oxygen vacancy for TiO_{2-x}. The lattice parameters of the surface slab were a = 10.210 Å, b = 3.776 Å, c = 29.353 Å. Exchange correlation potentials, basis sets and pseudopotentials were the same as before (*vide supra*). The Brillouin zone was sampled with (4 x 4 x 1) Monkhorst-Pack scheme of kpoint mesh to carry out numerical integration in the reciprocal space.⁸ Computation was performed with criterion of 10⁻⁶ eV and 0.01 eV/Å for spin polarized electronic self-consistent field calculations and Hellmann-Feynman forces respectively. Spurious self-interaction errors from Ti 3d shells were resolved utilizing on-site Coulombic interactions employed via the Hubbard *U* correction (GGA+U) ¹², following the Dudarev method of implementation ¹³. Hubbard parameter of *U*= 4eV for Ti species was selected as it best describes and reproduces the *d* electron localized nature of the defect states in TiO_{2-x} ¹⁴. Calculations of d-band center was implemented according to Eq. 2.¹⁵

$$\varepsilon_d = \frac{\int_{-\infty}^{\infty} n_d(\varepsilon)\varepsilon \,d\varepsilon}{\int_{-\infty}^{\infty} n_d(\varepsilon) \,d\varepsilon}$$
(2)

where $n_d(\varepsilon)$ is the DOS of 3d orbitals of the surface Ti atoms at a given energy ε .

2. Experimental Methods

2.1 Chemicals and Materials

Titanium (IV) fluoride, polyethylene powder and sodium hydroxide were obtained from Sigma Aldrich. Titanium (III) chloride 30% solution and cyclohexane were obtained from Merck. Absolute ethanol was obtained from J. T. Baker. All chemicals were used as received without any further purification.

2.2 Photocatalyst Synthesis

TiO_{2-x} was synthesized via solvothermal method. Briefly, TiF₄ was dissolved in 5ml of absolute ethanol under vigorous stirring. Then, 2ml of 30% TiCl₃ solution was added and stirred for 30 minutes, resulting in a solution with a Ti⁴⁺:Ti³⁺ molar ratio of 0.06. The solution was transferred into a Teflon-lined stainless steel autoclave and heated to 180°C for 24 hours under a ramping rate of 10°C min⁻¹. The photocatalyst obtained was then washed with ethanol, 0.1M NaOH and DI water, then dried overnight in an oven. Pristine TiO₂ was synthesized by calcining the assynthesized TiO_{2-x} in a furnace at 400°C for 4 hours at 5°C min⁻¹ ramping rate.

2.3 Characterization

Powder X-ray diffraction (XRD) was conducted using Bruker D8 Discover with Cu K α radiation (λ =1.54056 Å). Energy dispersive X-ray spectroscopy (EDX) was performed using Hitachi SU8010 under 15kV accelerating voltage.

2.4 Photocatalytic Degradation of Polyethylene

Photocatalyst-polyethylene nanocomposite films were prepared using a two-step casting method. In the first step, 150mg of polyethylene powder was added into 20ml of cyclohexane and heated to 70°C under stirring for 1 hour to achieve dissolution. 2ml aliquots were sampled and casted into a 4cm petri dish, then heated to 100°C for 20 minutes to evaporate the solvent, and

dried overnight in an oven at 40°C. In the second step, an appropriate amount of photocatalyst was added into the petri dish to match the amount of polyethylene casted. Then, 3ml of cyclohexane was added and ultrasonicated for 5 minutes at 80°C to disperse the photocatalyst within the polyethylene film. The nanocomposite film was then heated to 100°C for 20 mins to drive off the solvent, and dried overnight in an oven at 40°C.

Photocatalytic polyethylene degradation was performed using a 100W UV395nm LED lamp at an irradiation intensity of 10mW/cm² for the duration of 2 weeks. The degradation performance was quantified by the mass loss of polyethylene according to Eq. 3

$$Degradation (\%) = \frac{m_{PE, 0} - m_{PE}}{m_{PE, 0}} \times 100\%$$
(3)

3. DFT results

Figure S1. Configurations of sec-pentyl hydroperoxide adsorption onto TiO₂ surface.

Table S1. Comparison of adsorption energies of sec-pentyl hydroperoxide adsorption onto TiO_2 .Adsorption energies reported are relative to the most stable adsorption configuration TiO_2 -O2a.

Adsorption Orientation	Adsorption Energy, E _{ads} (eV)
TiO ₂ -O1a	0.2811
TiO ₂ -O1b	0.1225
TiO ₂ -O1c	0.2425
TiO ₂ -O2a	0.0000
TiO ₂ -O2b	0.4479
TiO ₂ -O2c	0.2213

Figure S2. Configurations of sec-pentyl hydroperoxide adsorption onto TiO_{2-x} surface.

Figure S3. a) top view and b) side view of unique adsorption active sites on TiO_{2-x} surface. Orange circle and arrows depict the non-symmetrically equivalent undercoordinated adsorption sites.

Table S2. Comparison of adsorption energies of sec-pentyl hydroperoxide adsorption onto TiO_{2-x} . _x. Adsorption energies reported are relative to the most stable adsorption configuration TiO_{2-x} -O2a1.

Adsorption Orientation	Adsorption Energy, E _{ads} (eV)
TiO _{2-x} -O1a1	0.2776
TiO _{2-x} -O1a2	0.3319
TiO _{2-x} -O1a3	0.5321
TiO _{2-x} -O1b1	0.1097
TiO _{2-x} -O1b2	0.2310
TiO _{2-x} -O1b3	0.3476
TiO _{2-x} -O1c1	0.2903
TiO _{2-x} -O1c2	0.2645
TiO _{2-x} -O1c3	0.4355
TiO _{2-x} -O2a1	0.0000
TiO _{2-x} -O2a2	0.0623
TiO _{2-x} -O2a3	0.1345
TiO _{2-x} -O2b1	0.3603
TiO _{2-x} -O2b2	0.3656
TiO _{2-x} -O2b3	0.1625
TiO _{2-x} -O2c1	0.2323
TiO _{2-x} -O2c2	0.2656
TiO _{2-x} -O2c3	0.3805

Figure S4. Density of states of a) TiO_2 and b) TiO_{2-x} .

REFERENCES

(1) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Physical review B* **1996**, *54* (16), 11169.

(2) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. *Physical Review B* **1994**, *49* (20), 14251.

(3) Chen, W.; Kuang, Q.; Wang, Q.; Xie, Z. Engineering a high energy surface of anatase TiO₂ crystals towards enhanced performance for energy conversion and environmental applications. *RSC Adv.* **2015**, *5* (26), 20396-20409, 10.1039/C5RA00344J. DOI: 10.1039/C5RA00344J.

(4) Cheng, H.; Selloni, A. Surface and subsurface oxygen vacancies in anatase TiO₂ and differences with rutile. *Phys. Rev. B* **2009**, *79* (9), 092101. DOI: 10.1103/PhysRevB.79.092101.

(5) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Physical review letters* **1996**, *77* (18), 3865.

(6) Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* 1994, *50* (24), 17953-17979.
DOI: 10.1103/PhysRevB.50.17953.

(7) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **1999**, *59* (3), 1758-1775. DOI: 10.1103/PhysRevB.59.1758.

(8) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. *Phys. Rev. B* 1976, 13 (12), 5188-5192. DOI: 10.1103/PhysRevB.13.5188.

(9) Bader, R. F. Atoms in molecules. Acc. Chem. Res. 1985, 18 (1), 9-15.

(10) Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. *Comput. Mater. Sci.* **2006**, *36* (3), 354-360. DOI: 10.1016/j.commatsci.2005.04.010.

(11) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *J. Chem. Phys* 2000, *113* (22), 9901-9904.
DOI: 10.1063/1.1329672.

(12) Elahifard, M.; Sadrian, M. R.; Mirzanejad, A.; Behjatmanesh-Ardakani, R.; Ahmadvand, S. Dispersion of defects in TiO₂ semiconductor: Oxygen vacancies in the bulk and surface of rutile and anatase. *Catalysts* **2020**, *10* (4), 397.

(13) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electronenergy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. *Phys. Rev. B* **1998**, *57* (3), 1505-1509. DOI: 10.1103/PhysRevB.57.1505.

(14) Linh, N. H.; Nguyen, T. Q.; Diño, W. A.; Kasai, H. Effect of oxygen vacancy on the adsorption of O_2 on anatase TiO₂(001): A DFT-based study. *Surf. Sci.* **2015**, *633*, 38-45. DOI: 10.1016/j.susc.2014.11.015.

(15) Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces.*Surf. Sci.* 1995, *343* (3), 211-220. DOI: 10.1016/0039-6028(96)80007-0.