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1 The Derivation for the Universal Dispersion Relation with Setting Chirality as Zero
By Bohren decomposition, the primary electric and magnetic fields in the chiral medium are retrieved from1

E = (F++F−)/2
H = (F+−F−)/(2iη).
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Utilizing trigexpand and setting κ1 = κ2 = κ3 = 0, which means that α1±,3± = α, k1±,3± = k, η1 = η3 = η , the
universal dispersion relation |M|= 0 can be reduced to:[
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Multiplying Eq. 3 by 1/(α2η2αη) and substituting the relation of
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into the Eq. 3, we can derive the dispersion relation as:[(
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Next let us start from the dispersion relation of TM-SPPs in the achiral structure with double graphene sheets:

AA = det
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When considering α1 = α3, εr1 = εr3, we can get:(
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According to the reference,2,3 the Eq. 6 can be derived as[(
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One can see the first and fourth factors of Eq. 5 are the same as Eq. 8, namely the dispersion of TM-SPPs in
achiral case. Analogously, the second and third factors of Eq. 5 are the dispersion of TE-SPPs in achiral case.
Thus, we argue that there is no conflict between Eq. 3 and Eq. 8. About the intelligence about the TE-SPPs, one
can refer to the literature.4 Note that we take the nonmagnetic material (µr = 1) during the entire procession.

We can explain the physical insights of the evolution of the dispersion relation. The hybrid plamonic modes
in CGCGC structure, which can be described by |M| = 0, are different from the pure TM and TE modes in the
structure without chirality. When the chirality is reduced to zero, the dispersion relation reduces to the product
of the TM and TE contributions, which generalise the traditional dispersion relation of the SPPs in the structure
without chirality and with double graphene layers.
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Fig. 1 The dependence propagation constant of symmetric mode and anti-symmetric mode in achiral and chiral cases with εr1 = εr2 =

εr3 = 2.

The distributions of Ez and Ex for symmetric mode and anti-symmetric modes are presented in Fig. 1 (one is
symmetric then the other anti-symmetric), which corresponds to the excitation frequency at the intersections of
the white dotted line with dispersion curves in Fig.2 in the article. Besides, the third field component Ey, which
is far less than Ez and Ex components, is unzero in chiral cases but zero in achiral cases. The distribution of fields
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is extended and the propagation is improved slightly.

2 Discussion on the Dispersion Relation
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Fig. 2 The dependence of propagation constant of symmetric mode (β+) and anti-symmetric mode (β−) on κ2 and εr1 = εr2 = εr3 = 2.

In the case of κ1 = κ3 = 0, the variation of propagation constant with the chirality in core medium shows
a symmetric arch tendency, while in the case of κ1 = κ3 6= 0, the tendency become asymmetrically inclined
and the inclining direction depends on the sign of the chirality of the environment. It seems that there exists
a calibration effect of chirality in core medium on the chirality of environment. We exhibit the propagation
constant with different chemical potential of graphene (0.3 eV, 0.45 eV, 0.6 eV) and the chirality of medium 1,
3 (0, ±0.3, ±0.5) as the chirality of medium 2 sweeps ranging from −1 to 1 as shown in Fig. 2.

Fig. 3 demonstrates the relations between the propagation constant β and the chemical potential of graphene
µc with and without chirality in three typical distances between two graphene sheets according to the dispersion
of GSPPs in CGC structure under the wavelength of 10 µm. It is clear that the propagation constant decreases
with the increase of chemical potential of graphene and becomes flattened gradually for larger µc. Also, the
graphene with a small chemical potential is not a reliable material for exciting GSPPs. In this case, the effective
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Fig. 3 The dependence propagation constant of symmetric mode (β+) and anti-symmetric mode (β−) on µc and εr1 = εr2 = εr3 = 2, κ1 =

κ2 = κ3 = 0 in (a) and κ1 = κ2 = κ3 = 0.5 in (b).

wavelength approaches 0, the effective refractive index is meaningless and there exist neither symmetric mode
nor anti-symmetric mode. Compared with the achiral case, the minimum chemical potential to excite the GSPPs
becomes smaller in the chiral case. The chirality plays a more important role in an appropriate distance between
the two graphene sheets. In the case of large distance without chiral medium, the interaction of GSPPs near two
graphene sheets is weak, which results in the trivial splitting of the curves, depicting the relation between β and
µc (see the solid and dashed green lines in Fig. 3). After the introduction of chirality, the interaction is enhanced
and the curve difference becomes larger. By contrast, the influence of chirality in a smaller distance is concealed
by the effect of distance. It should be pointed that there is only one line at the bottom of Fig. 3 (a), but two lines
in Fig. 3 (b), which correspond to the dielectric line splitting mentioned in the manuscript.

3 Interpretation of the Formulas of Optical Force and Torque
Considering the configuration shown in Fig. 4 (a), the particle (sphere) with radius r = 50 nm and εsp = 2 is
placed in the core of the structure as the detector particle. Then we investigate the optical force and torque
exerted on the particle. In fact, when the size of the particle is much smaller than the wavelength, namely in the
Rayleigh regime, kr� 1, the problem can be simplified as the dipole approximation. Without loss of generality,
we take an example of symmetric mode with µc = 0.30 eV, λ = 15 µm.

The induced dipolar moments of such a chiral particle can be expressed as:[
p
m
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=
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]
, (9)

where p and m are the electric and magnetic moments, respectively; E and H are the fields acting on the
particle. Here the polarizability of the particle is specified by parameters αee,αmm and αem. Note that, the
particle we introduced is achiral, namely αem = 0. The generalized expression of the optical force based on the
dipole approximation writes as5:
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(10)

The first and second terms in the equation above represent the gradient force and radiation pressure, and the
remaining terms describe the scattering recoil force.
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Fig. 4 Force and torque symmetric mode of SPPs. (a) The schematic of detecting the chirality in the environment. (b) The lateral force
versus κ. (c) The side view of norm electric field in the structure. (c) The lateral torque versus κ. λ = 15 µm, d = 300 nm, µc = 0.30 eV, εr1 =

εr3 = 2.25, εr2 = 1, and κ1 = κ3 = κ, κ2 = 0.
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U is the term due to particle–field interaction; Sw stand for the time average energy density, electric spin
angular momentum density, and magnetic spin angular momentum density respectively. σe, σm, and σt are the
cross-section. In addition, γe and γm also have the dimension of a cross-section. And the generalized expression
of the optical torque writes as6,7:

T = Re [α∗em]S−
2ω

ε0
Re [α∗ee]Le−

2ω
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Re [α∗mm]Lm. (12)
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