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We have studied separation of hydrogen and methane mixture in equal proportions, using a thin
film comprised of 10 layers of nano particles deposited layer-wise using our "two-point sticking
algorithm" which simulates controlled agglomeration of such nanoparticles. We simulate the process
of gas separation using LAMMPS. We have studied the scenario where nanoparticles act like hard
spheres, maintaining their shape and size, similar to what has been demonstrated by experiments
involving self-assembled nanoparticle thin films. We consider pressure dependence of the results by
working at 3 different initial pressures, 0.1*Po, 0.5*Po and Po, where Po is the atmospheric pressure.
Three different diameters of the nanoparticles namely 3 nm, 6 nm and 9 nm are considered, and
therefore the overall thickness of the membranes used ranges from 30 nm to 90 nm. We obtained
perm-selectivity values that are significantly higher than the Robeson line for hydrogen-methane gas
separation indicating the novelty and therefore the significant applications of this work. We find that
while the permeance of hydrogen remains more or less steady with a ten-fold increase of pressure,
the corresponding fall in methane’s permeance is very sharp. The sharpness is more if the size of the
nanoparticles is smaller, thereby giving higher selectivity at higher pressure.

1 Particle Deposition Algorithm
The particles are deposited layerwise with periodic boundary con-
dition in the X and Y directions. To deposit the first layer of parti-
cles, the Z-coordinate is fixed to R (radius of nanoparticle chosen)
and the X and Y coordinates were chosen at random. The coor-
dinate chosen was compared to particles already created. In case
a particle in that location would overlap with existing particles,
it would be discarded. For a particle to be created, there was
another condition besides non-overlapping; if more than 10% of
the maximum particles that could be accommodated in that layer
were already deposited (for a 10x10 membrane, that would be
10% of 100 nanoparticles sitting uniformly), then the particle
would be generated in a given coordinate only if it would be in
contact with at least 2 other previously generated particle ( “Con-
tact” here is defined as two particles whose centerline distance is
between 2*R and 2.1*R, where R is radius). This is to simulate
the nanoparticle’s tendency to stick together.

In the subsequent layers, the condition that the particles must
be in contact with at least 2 particles is retained, with an addi-
tional condition that at least 1 of the 2 minimum contacts must
be below it (“below” here is defined as two particles whose Z-
coordinate differs by 1.5*R). The Z-coordinate is taken as a vari-
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able as well, with its value varying over 2*R nanometers starting
from previous layer’s average Z-coordinate. As the layer gets filled
up, a new condition is imposed (after 20% of the maximum parti-
cles that could fit in the layer is deposited); for any particle to get
created, it must, in addition to the previous conditions, also be
in contact with at least one particle in the horizontal plane. This
would simulate the nanoparticles aggregating closer together.

The conditions mentioned above is checked prior to the cre-
ation of any particle. If the XYZ coordinate chosen doesn’t satisfy
the conditions mentioned, that coordinate is discarded and a new
one is chosen. This is done at most 1 million times for each parti-
cle. If a particle is created within those tries, the counter is reset
to 0 and the process starts again for the next particle (1 million
tries are given for the new particle). If no particle is created even
on the 1 millionth try, then the layer is assumed to be filled, and
the algorithm moves to the next layer and starts depositing parti-
cles there.

The deposition is shown in Figure 1a. The same is shown with
periodic boundary condition in Figure 1b.

Void Analysis

Once the particles are deposited, we analyse the voids created
within the deposition. The next section goes over the methodol-
ogy used to analyse the voids.
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(a) Isometric view. (b) View with periodic condition.

Fig. 1 Particles deposited in a 10x10 membrane.

Table 1 Curve fit parameters

Gas Flow
Direction

x0 amp σ

Value
Error (+/-

%)
Value

Error (+/-
%)

Value
Error (+/-

%)
Vertical 1.519017 0.035715 0.087379 0.00456 0.59359 0.03625

Horizontal 1.452188 0.022593 0.108243 0.004588 0.461693 0.022604

Fig. 2 The knee method of Kmeans.

Fig. 3 The top pixel layer where the white region represents
the region occupied by particles.

Methodology
1. Twenty horizontal cross sections of the nanoparticle depo-

sition are taken. One each at the average Z coordinate of
all particles in a layer, and one in between two concurrent
planes.

2. The plane is then subdivided into small uniform squares (0.3
Angstroms each side for 3 nm diameter nanoparticle depo-
sition), called pixel. Each pixel is classified as a void or not
using Monte Carlo method1, wherein a number of darts are
thrown into each pixel and the location of the dart is used
to find if that position is within a particle or in empty space.
After throwing a certain number of darts, the pixel is classi-
fied as a void space if 50 or greater percentage of the total
darts thrown landed in a spot that was a void. If it is void
space, that pixel is given a value of 1.

3. Kmeans algorithm is used to cluster these pixels together to
form an elliptical approximation of voids. The number of
voids (or clusters) that can exist in one layer serves as an in-
put parameter. This was run for many values of the number
of clusters. This algorithm has to be run for varying diam-
eter, therefore to get a general value of the most preferred
input parameter, a ratio was defined.

Cluster Ratio =
Clusters
Diameter

(1)

This ratio is varied from 9 till 26 covering the following val-
ues (9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26). The
simulation is carried out for deposition of 3 nm diameter
particles, therefore the clusters will vary from 27 to 78.

4. The kmeans algorithm aims to minimize the “inertia”, i.e.,
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(a) 27 clusters. (b) 42 clusters. (c) 45 clusters.

(d) 48 clusters. (e) 60 clusters. (f) 78 clusters.

Fig. 4 Top layer of pixels for different number of clusters.

the within-cluster sum of squared distance criterion, which
is shown in Eq. 22. 300 iterations are performed for each
cluster number. The inertia of the model at the end is stored
for each cluster number. The Inertia vs clusters graph is plot-
ted and using the knee method, the optimum cluster value
is found.

n

∑
i=0

min
µ j∈C

(∥∥xi −µ j
∥∥2
)

(2)

5. Once the clusters were created, an ellipse was approximated
around the cluster to get the minor and major axis of it

Result
From the Figure 2, we found the optimum cluster size for 3nm dia
particles to be 45, i.e., the Cluster Ratio is 15. This was found us-
ing the knee method on the inertia vs clusters graph, Figure 3. We
can see the gradual decrease in inertia as we increase the number
of clusters. Using the inherently approximate Knee method, we
picked 45 as the optimum number of clusters. We also used visual
means of verifying the results through Ovito.

The Figure 3 shows the top layer of the pixel layers. The white
regions are those pixels that are un-activated as there is no void
space there.

Figure 4 shows how the top layer looks for each cluster value.
The oddly shaped objects are the elliptical approximation made
based on the data given by Kmeans regarding the cluster each
pixel belongs to. As we can see, if the clusters input is too low,
we’ll end up with bigger ellipses that very often overlap with a
particle. If the input is too high, then the void spaces are broken

up into 2 or more ellipses. The ratio of 15, i.e., the input of 45
as the cluster number per layer seems to be the most optimal, so
that was chosen to represent the void data in the paper.

Curve Fitting Void Distribution
The total count of pores at different diameters of the pore was
extracted to estimate a pore distribution function (PDF). A normal
distribution was assumed to fit the curve, shown in Eq. 3.

ψ(x) = amp∗ 1√
2π

∗ e−
(x−x0)

2

2σ2 (3)

Table 1 summarizes the curve fit parameters obtained. It is ob-
served that the average pore size is 4.6% smaller for gas flowing
horizontally through the substrate. This is expected due to the
imposition of additional constraints to ensure the particle always
"sit" on top of other particles, in order to simulate the effect of
gravity.

Conflicts of interest
There are no conflicts to declare.

Notes and references
1 D. M. Benov, Monte Carlo Methods and Applications, 2016, 22,

73–79.
2 T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-

verman and A. Y. Wu, IEEE Transactions on Pattern Analysis &
Machine Intelligence, 2002, 881–892.

Journal Name, [year], [vol.], 1–3 | 3


	Particle Deposition Algorithm

