Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

## **Supplementary Information**

## Facile preparation of a MXene-graphene oxide membrane and its voltage-gated ion transport behavior

Huifang Ouyang,<sup>a, b</sup> Xufeng Hong,<sup>a, c</sup> Zhiyuan Zhou,<sup>a</sup> Peng Xu,<sup>a</sup> Hui Tang,<sup>d</sup> Zeyu Ma,<sup>b</sup> Zhuqing Wang,<sup>b</sup> Xiaoqiao Liao,<sup>b</sup> Liang He\*, <sup>b, e</sup>

- a. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, P.
  R.
  China
- c. School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- d. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- e. Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, P. R. China

E-mail: hel20@scu.edu.cn

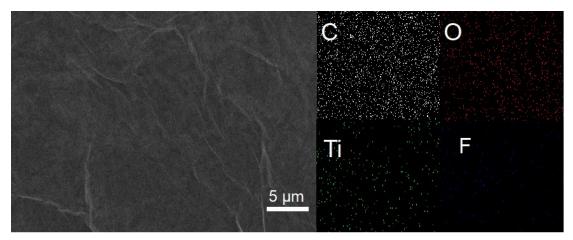



Fig. S1 SEM image of the MGO-7 and its EDS elemental mapping.

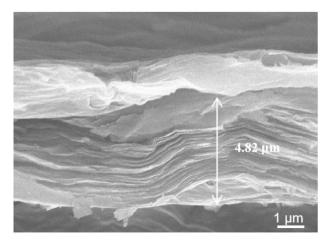



Fig. S2 Cross-section SEM image of the MGO-7.

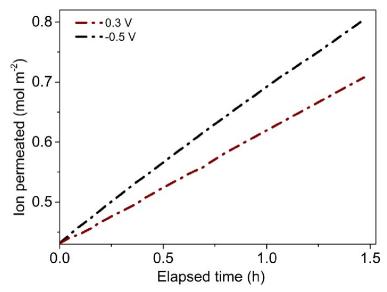
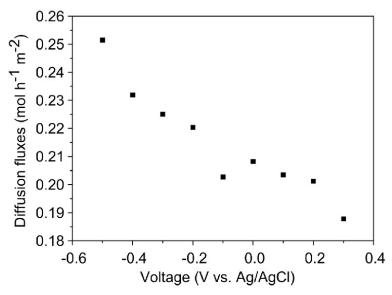
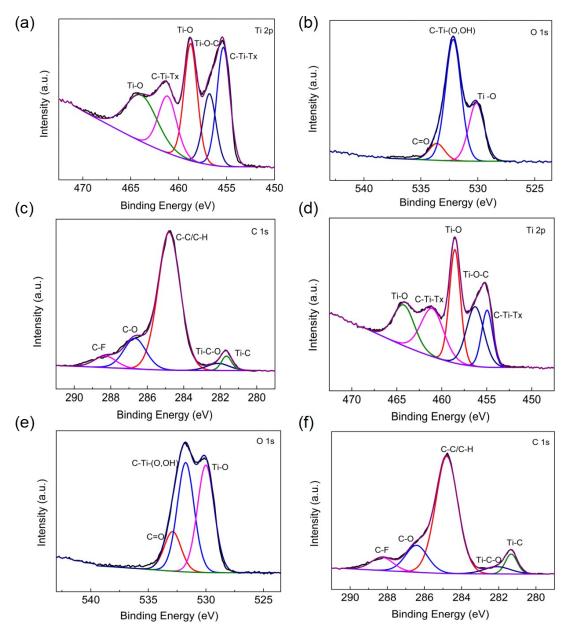



Fig. S3 The steady-state diffusion curves obtained under  $V_g$  of -0.5 and +0.3 V at MXene: GO = 7: 3.





Fig. S4 Molar conductivity of MGO-7 at different potentials.

It can be observed that when  $V_g$  are -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2 and 0.3 V, the diffusion fluxes are 0.251, 0.232, 0.225, 0.220, 0.203, 0.208, 0.233, 0.211 and 0.188 mol  $h^{-1}$  m<sup>-2</sup>, respectively.

**Table. S1** The charge transfer resistance ( $R_{ct}$ ) and ohmic resistance ( $R_{e}$ ) of MGOm at different modulation ratios.

| MXene: GO                   | 8: 2  | 7: 3  | 6: 4  | 5: 5   | 4: 6   | 10: 0 |
|-----------------------------|-------|-------|-------|--------|--------|-------|
| $R_{ct}\left(\Omega\right)$ | 3.45  | 1.10  | 4.32  | 4.87   | 5.49   | 2.90  |
| $R_{e}\left(\Omega\right)$  | 48.88 | 70.72 | 82.52 | 152.20 | 160.90 | 46.64 |

The smaller the ohmic resistance ( $R_e$ ), the higher the electrical conductivity. The smaller the charge transfer resistance ( $R_{ct}$ ), the higher the charge transport rate, and the steeper the straight line at the low-frequency region indicates the higher ion diffusion rate.



**Fig. S5** XPS spectra of MXene phases in MGO-7 near the salt concentration side of pristine membranes (a-c) and the samples after test (d-f).

It can be concluded that no changes in the number and displacement of peaks occur, indicating that no new phases are generated before and after the test.