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S.1 Supplement to Methods

S.1.1 Overlap Integral of Activation Functions

The overlap integral of two basis functions represents a key calculation step within the

unsupervised learning process of the FF-ANN. This overlap integral describes the scalar

product between two activation functions and is applied e.g. when determining the

orthogonality contribution for the loss function. In the following derivation the activation

function can be assumed to be located only in the real space without any loss of generality,

hence no sub-layer I is considered:
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Considering the SIREN activation function, where g(x) = sin(wx + b), the integral can

be evaluated to following form
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in contrast the integral over the Gaussian function can only be evaluated numerically,
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which corresponds to a summation over numerically computable Gaussian error functions.

3



S.1.2 Orthogonality Contribution

Fig. S.1: Comparison of a linear penalty (blue dashed) applied to the orthogonality with
a quadratic-like penalty (orange). The figure highlights the steeper slope in the limit
φo → 1 for the quadratic penalty, which results in a stronger repulsion from previously
found states, especially in the beginning of the optimization.
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S.2 Supplementary Results

S.2.1 Harmonic Oscillator and Morse Potential

Table S.1: Comparison of the 8 lowest analytic eigenenergies of a quantum harmonic
oscillator (~ = 1, µ = 1, ω = 1) and the 6 lowest eigenergies of a Morse oscillator (~ =
1, µ = 1, a = 1.5, De = 20 and xc = 0) against the results obtained via the FF-ANN
framework employing 40 and 65 neurons respectively. Energies are given in hartree.

n En Harmonic En Morse

Analytic FF-ANN Analytic FF-ANN

0 0.5 0.5000000 4.1908859 4.1909034

1 1.5 1.5000003 10.8851578 10.8852722

2 2.5 2.5000013 15.3294296 15.3305088

3 3.5 3.5000045 17.5237025 17.5248299

4 4.5 4.5000541 17.8393715 17.8457102

5 5.5 5.5011938 18.0108957 18.0177432

6 6.5 6.4999631

7 7.5 7.5002975
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Fig. S.2: Comparison of the 4 lowest analytical eigenstates (red dashed) of a quantum
harmonic oscillator (setting ~ = 1, µ = 1 and ω = 1) with the results obtained via the
FF-ANN approach (red dashed). The FF-ANN was built with 40 neurons.
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Fig. S.3: Results of the node scan for a quantum harmonic oscillator (setting ~ = 1, µ = 1
and ω = 1). The difference between the FF-ANN and analytic eigenenergy for every state
is plotted against the number of nodes. When employing 30+ neurons, the FF-ANN
eigenenergies agree with their analytic counterparts to a high precision up to the 5-th
eigenstate (n = 4).
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Fig. S.4: Comparison of the 4 lowest analytical eigenstates (red dashed) of a Morse
oscillator (setting ~ = 1, µ = 1, a = 1.5, De = 20 and xc = 0) with the results obtained
via the FF-ANN approach (black). The FF-ANN was built with 65 neurons.
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S.2.2 Rotational States of HCl35 Rigid Rotor

Table S.2: Comparison of the analytical transition wavenumbers of the 10 lowest rota-
tional states of the HCl35 molecule as a rigid rotator against the results obtained via the
FF-ANN framework employing 40 neurons. The analytical eigenenergies can be deter-
mined via E = −~2

2I
J(J + 1) with J being the rotational angular momentum quantum

number and I = 1.597 89 g/mol�A2
. Wavenumbers are given in cm−1.

Transition Analytic FF-ANN |∆ν|

0-1 10.549428168652 10.5494281686610 9E-12

1-2 31.648284505986 31.6482845059830 3E-12

2-3 52.747140843313 52.7471408433060 7E-12

3-4 73.845997180584 73.8459971806280 4.3E-11

5-6 94.944853518007 94.9448535179500 5.7E-11

6-7 116.043709855167 116.0437098552720 1.0E-10

7-8 137.142566184570 137.1425661925941 8.0E-9

8-9 158.241422507206 158.2414225299169 2.3E-8

9-10 179.340278798078 179.3402788672390 6.9E-8
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Fig. S.5: Comparison of the analytical transition wavenumbers of the 10 lowest rotational
states of the HCl35 molecule as a rigid rotator against the results obtained via the FF-
ANN framework employing 40 neurons. In the upper plot the rotational transitions of
the FF-ANN and the analytical data are given. The lower plot represents the absolute
deviations between the FF-ANN and the analytical solutions with a logarithmic scale.
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S.2.3 Razavy and Hyperbolic Double Well Potential

Table S.3: Comparison of the analytical eigenenergies of the 7 lowest states for the
hyperbolic and the Razavy double-well potentials as shown in figures S.6 and S.7 against
the results obtained via the FF-ANN framework employing 55 and 65 neurons. Energies
are given in hartree.

n En Hyperbolic En Razavy

Analytic FF-ANN Analytic FF-ANN

0 3.6117753 3.6118140 15.6246588 15.6246606

1 3.6498299 3.6497912 15.6247205 15.6247245

2 9.8896220 9.8896221 43.2555013 43.2568218

3 10.7467599 10.7467599 43.2760513 43.2748418

4 14.9973344 14.9973344 64.4698618 64.4704945

5 18.2095036 18.2095036 65.7900215 65.7908659

6 22.4372499 22.4372499 77.8179335 77.8199832
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Fig. S.6: Hyperbolic double well potential (orange) with parameters a = 2 and k = 30 is
shown on top. Again ~ = 1 and µ = 1. The wave functions of the symmetric ground and
antisymmetric first excited state, obtained via a FF-ANN with 55 neurons (black) are
depicted with their respective analytic counterparts (red dashed). The spatial differences
(blue) between numerical and analytic wave functions are shown at the bottom and are
of order 10−3.
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Fig. S.7: Razavy potential (orange9 with parameters ξ = 3.5 and M = 12 is shown
on top. Again ~ = 1 and µ = 1. The wave functions of the symmetric ground and
antisymmetric first excited state, obtained via a FF-ANN with 65 neurons (black) are
depicted with their respective analytic counterparts (red dashed). The spatial differences
(blue) between numerical and analytic wave functions are shown at the bottom.
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S.2.4 Vibrations of H2, HD and D2

Fig. S.8: At the top from left to right the vibrational stretch poetential energies calculated
at Full-CI/cc-pVQZ level, the ground state and the first seven excited states shifted
with their respective eigenvalues of H2, HD, and D2 are shown. At the bottom the
influence of the different effective masses on the first three eigenstates regarding the
three isotopologues H2 (blue), HD (orange) and D2 (green) is pointed out via a graphical
comparison. All eigenstates were obtained by the application of the FF-ANN on the
generated PES using 40 nodes and the SIREN activation function approach.
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