Supporting Information for

Methanofullerene reversibly switchable by photoexcitation and reduction

Sofia V. Gracheva, Tatiana S. Yankova, Maria P. Kosaya, Victor A. Brotsman, Ilya N. Ioffe, Natalia S. Lukonina*, Alexey A. Goryunkov

Contents:

Reagents and solvents	1
Synthetic procedures	1
Experimental methods	2
Quantum chemical calculations	3
References:	3

Reagents and solvents

4,4'-dimetoxybenzophenone (Sigma-Aldrich, 97%), tosyl hydrazine (TsNHNH₂) (Sigma-Aldrich, 97%), TsOH*H₂O (Sigma-Aldrich, 98.5%), C₇₀ (Fullerene-center, Russia, 99,8%), CF₃I (P&M Invest, Russia, 99%), pyridine (Acros Organics, 99+%), 18-crown-6 (Sigma-Aldrich, 99%) were used as received. K₂CO₃ was dried in vacuo at 120°C for 3 hours.

Toluene (Chimmed, 99%) was refluxed over Na for 2 h, and then distilled; fraction with b.p. 110.6 °C was collected. Hexane (Chimmed, 99%) was refluxed over P_2O_5 for 2 h, and then distilled; fraction with b.p. 69°C was collected.

o-Dichlorobenzene (Acros Organics, 99%) was refluxed over CaH₂ for 2 h, and then distilled under reduced pressure (12 mmHg); fraction with b.p. 64°C was collected.

Synthetic procedures

Synthesis of 4,4'-dimetoxybenzophenone tosyl hydrazone¹. 4,4'-dimetoxybenzophenone (2.12 g, 8.7 mmol) was dissolved in methanol in a round bottom flask, then T_{SNHNH_2} (1.64 g, 8.8 mmol) and T_{SOH+H_2O} (catalytic amount) was added. The reaction mixture was refluxed for 6 hours. After that, the reaction mixture was cooled down, the white precipitate was vacuum-filtrated and washed with cold methanol (3.30 g, 8.0 mmol, 91% yield).

Synthesis of C_s - $C_{70}(CF_3)_8^2$. To obtain C_s - $C_{70}(CF_3)_8$, a two-step procedure was employed. Fullerene C₇₀ (40 mg) was placed into a three-section glass ampoule, and the excess of CF₃I was condensed. The ampule was sealed and heated at 420 °C in a gradient furnace for 48 h to give a mixture of higher

trifluoromethylfullerenes (146 mg), which was then thoroughly ground with pristine C_{70} (56 mg), put into two-section glass ampoule. Then the ampule was sealed and heated at 440 °C in a gradient furnace for 40 h. Individual trifluoromethylfullerenes were isolated by means of preparative HPLC.

<u>Mixture of C₇₀(CF₃)_n (n=18-20)</u>: MALDI MS m/z (I, %): 2082 (7%, C₇₀(CF₃)₁₈⁻), 2152 (25%, C₇₀(CF₃)₁₉⁻), 2220 (100%, C₇₀(CF₃)₂₀⁻).

<u>Mixture of $C_{70}(CF_3)_n$ (n=6-10)</u>: MALDI MS m/z (I, %): 840 (25%, C_{70}^-) 1254 (11%, $C_{70}(CF_3)_6^-$), 1392 (100%, $C_{70}(CF_3)_8^-$), 1530 (90%, $C_{70}(CF_3)_{10}^-$); HPLC (t_R , min, CB 4.6 mm i.d. × 250 mm , toluene, 1 mL·min⁻¹): 3.7 (C_{1-p}^7mp - $C_{70}(CF_3)_{10}$), 4.6 (C_5-p^7 - $C_{70}(CF_3)_8$), 5.2 (C_2 - $C_{70}(CF_3)_8$), 12.5 (C_{70}).

<u> $C_s p^7 - C_{70}(CF_3)_8$ </u>: MALDI MS m/z (I, %): 1392 (M⁻, C₇₀(CF₃)₈⁻), 100%); HPLC (t_R , min, CB 4.6 mm i.d. × 250 mm, toluene 1 mL·min⁻¹): 4.6.

Figure S1. UV-vis spectrum of $C_{70}(CF_3)_8$ [DPM] in comparison with parent $C_{70}(CF_3)_8$ and other related derivatives.

Experimental methods

Mass spectrometry. MALDI mass spectra were recorded in the negative ions mode using a Bruker Autoflex II TOF-mass spectrometer (337 nm impulse nitrogen laser). Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2propenylidene]malononitrile (DCTB, Sigma Aldrich, ≥98%) was used as matrix.

Quantum chemical calculations

Vertical emission energy and excited state geometry optimization were computed by TDDFT approach with employment BHHLYP³ and PBEO⁴ hybrid functionals using Def2-SVP basis set⁵ and the Firefly v. 8.2.0 package⁶, partly based on the GAMESS(US) software code⁷.

Molecular geometry optimization and relaxed PES scan were calculated at the DFT level of the theory using of the PRIRODA v.6 software implementing efficient RI approximation⁸, PBE exchange-correlation functional⁹ and a built-in basis set of triple zeta quality (TZ2p). Isotropic hyperfine coupling constants were calculated at the DFT-PBE level with quadruple zeta quality basis (QZ3p).

a) open configuration

Figure S2. Spin density distribution in the (a) open and (b) closed configurations of C₇₀(CF₃)₈[DPM]^{-•}.

References:

- Y. Xia, F. Hu, Z. Liu, P. Qu, R. Ge, C. Ma, Y. Zhang and J. Wang, Palladium-Catalyzed Diarylmethyl C(sp³)–C(sp²) Bond Formation: A New Coupling Approach toward Triarylmethanes, *Org. Lett.*, 2013, **15**, 1784–1787.
- N. M. Belov, M. G. Apenova, A. V. Rybalchenko, E. V. Borkovskaya, N. S. Lukonina, A. A. Goryunkov, I. N. loffe, S. I. Troyanov and L. N. Sidorov, Transalkylation of higher trifluoromethylated fullerenes with C70: a pathway to new addition patterns of C70(CF3)8, *Chem. Eur. J.*, 2014, 20, 1126–1133.
- 3 A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, *The Journal of Chemical Physics*, 1993, **98**, 1372–1377.

- 4 C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, *The Journal of Chemical Physics*, 1999, **110**, 6158–6170.
- 5 F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys Chem Chem Phys*, 2005, **7**, 3297–3305.
- 6 A. A. Granovsky, 2016.
- 7 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, General atomic and molecular electronic structure system, *Journal of Computational Chemistry*, 1993, 14, 1347–1363.
- 8 D. N. Laikov, Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets, *Chem. Phys. Lett.*, 1997, **281**, 151–156.
- 9 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.