Electronic Supplementary Information for: "Experimental and Computational and Studies of Sulfided NiMo/Al-PILC: Catalyst Activation and Guaiacol Adsorption Sites"

F. Oemry,*^a I. B. Adilina,^b W. T. Cahyanto,^c N. Rinaldi,^b F. Aulia,^b A. Jackson,^d S. F. Parker,^e A. B. Kroner,^f E. J. Shotton^f

^aResearch Center for Quantum Physics, National Research and Innovation Agency, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia

Email: fere001@brin.go.id

^bResearch Center for Advanced Chemistry, National Research and Innovation Agency, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia

^cDepartment of Physics, Universitas Jenderal Soedirman, Jl. dr. Soeparno 61, Purwokerto 53122, Indonesia ^dScientific Computing Department, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom

^eISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom

^fDiamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom

No.	Fitting model	Back	N	R(Å)	σ^2 (Å ²)	R-	Time-	temp in °C
		scatterer			x 10 ⁻³	factor	lapse	
			Stage 4 (∆k=	= 3 - 11 Å ⁻¹ , H ₂ S/	H ₂ /He gass	es)		
1	NiMoO ₄	0	2.4 ± 0.4	1.75 ± 0.04	0.31	0.0146	0:24:34	114.4 - 129.1
		0	3.6 ± 0.4	2.26 ± 0.04	18.85			
		Mo	2.0 ± 0.1	3.29 ± 0.01	11.8			
2	NiMoO ₄	0	2.9 ± 0.4	1.75 ± 0.04	1.44	0.0123	0:27:38	147 - 164.6
		0	3.1 ± 0.4	2.25 ± 0.05	19.79			
		Mo	2.0 ± 0.1	3.28 ± 0.01	13.85			
3	NiMoO ₄	0	2.8 ± 0.4	1.75 ± 0.04	1.27	0.0118	0:30:43	182.9 - 201.2
		0	3.2 ± 0.4	2.25 ± 0.05	19.69			
		Мо	2.0 ± 0.1	3.28 ± 0.01	14.09			
4	NiMoO ₄	0	2.8 ± 0.4	1.75 ± 0.04	1.41	0.0111	0:33:47	219.6 - 237.8
		0	3.2 ± 0.4	2.24 ± 0.06	19.8			
		Мо	2.0 ± 0.1	3.28 ± 0.02	14.44			
5	NiMoO ₄	0	2.7 ± 0.4	1.75 ± 0.04	1.56	0.0108	0:38:23	256.2 - 293.1
		0	3.3 ± 0.4	2.23 ± 0.07	19.54			
		Мо	2.0 ± 0.1	3.27 ± 0.02	15.1			
6	NiMoO ₄	0	2.8 ± 0.4	1.75 ± 0.04	1.98	0.0105	0:39:55	308.8
		0	3.2 ± 0.4	2.22 ± 0.08	19.5			
		Mo	2.0 ± 0.1	3.27 ± 0.03	15.81			
7	NiMoO ₄	0	2.9 ± 0.4	1.75 ± 0.04	2.27	0.0102	0:41:27	328.2
		0	3.2 ± 0.4	2.2 ± 0.09	19.21			
		Мо	2.0 ± 0.1	3.26 ± 0.03	16.2			
8	NiMoO ₄	0	2.9 ± 0.3	1.75 ± 0.04	2.74	0.0115	0:43:00	345.9
		0	3.1 ± 0.3	2.18 ± 0.12	17.17			
		Мо	2.0 ± 0.1	3.25 ± 0.05	17.33			
9	NiMoO ₄	0	2.9 ± 0.5	1.75 ± 0.04	3.65	0.0198	0:44:32	363.7
		0	3.2 ± 0.5	2.15 ± 0.15	14.29			
		Мо	2.0 ± 0.2	3.22 ± 0.07	17.85			
10	NiMoO ₄	0	1.9 ± 0.2	1.76 ± 0.05	1.13	0.0057	0:46:04	379.7
		Mo	1.9 ± 0.2	3.27 ± 0.02	14.75			
	Mo ₂ S ₉	S	1.8	2.47 ± 0.05	13.15			
		Mo	0.6	2.77 ± 0.11	11.32			
11	NiMoO ₄	0	1.5 ± 0.1	1.76 ± 0.04	0.39	0.0060	0:47:36	396.3
		Mo	1.5 ± 0.1	3.25 ± 0.04	12.93			
	Mo ₂ S ₉	S	1.6	2.45 ± 0.03	10.07			
		Мо	0.5	2.74 ± 0.08	10.77			
			Stage 5 (Ak=	= 3 - 11 Å ⁻¹ , H ₂ S/	H₂/He gass	es)		
12	NiMoO ₄	0	0.9 ± 0.3	1.75 ± 0.04	1.81	0.0209	0:56:49	418.1
		Mo	0.9 ± 0.3	3.22 ± 0.07	9.74			
	Mo ₂ S ₉	S	2.9 ± 0.7	2.44 ± 0.03	15.67			
13	NiMoO ₄	0	0.6 ± 0.3	1.74 ± 0.03	0.87	0.0204	0:58:21	420
		Mo	0.6 ± 0.3	3.20 ± 0.09	7.10			
	Mo ₂ S ₉	S	3.2 ± 0.9	2.43 ± 0.02	15.59			
			(∆k= 3.1	- 11 Å ⁻¹ , H ₂ S/H ₂ /	He gasses)			
14	Mo-Oxy50	0	0.4	1.74 ± 0.05	0.07	0.0209	0:59:53	422.1
	, Mo-Bare	S	3.7 ± 0.6	2.44 ± 0.08	15.90	J		
		Mo	3.7 ± 0.6	3.24 ± 0.09	20.08			
		S	1.9 ± 0.3	3.83 ± 0.07	13.20			
		-						

Table 1S: Mo K-edge EXAFS fitting parameters of NiMoPILC (*in situ*)

15	Mo-Oxy50	0	0.3	1.72 ± 0.03	0.62	0.0180	1:01:25	423.7
	Mo-Bare	S	4.2 ± 0.6	2.43 ± 0.07	16.31			
		Мо	4.2 ± 0.6	3.23 ± 0.08	20.17			
		S	2.1 ± 0.3	3.90 ± 0.09	13.86			
			(∆k= 3 -	11 Å ⁻¹ , H ₂ S/H ₂ /H	le gasses)			
16	Mo-Oxy50	0	0.4	1.73 ± 0.04	1.78	0.0125	1:02:57	423.5
	, Bulk MoS ₂	S	5.7 ± 0.7	2.44 ± 0.03	20.04	J		
	2	Мо	5.7 ± 0.7	3.23 ± 0.08	21.46			
		S	5.7 ± 0.7	3.86 ± 0.11	25.10			
17	Mo-Oxv50	0	0.4	1.72 ± 0.02	2.98	0.0135	1:04:29	418.8
	Bulk MoS ₂	S	6.0 ± 0.7	2.43 ± 0.01	19.92]		
		Mo	6.0 ± 0.7	3.22 + 0.06	21.93			
		S	6.0 ± 0.7	3.85 + 0.12	25.83			
18	Μο-Οχν50	0	0.5	1 71 + 0 02	6 47	0.0150	1.06.01	418 1
10		<u> </u>	66+09	2 43 + 0 02	20.46	0.0100	1.00.01	12012
	Durk Wi052	Mo	66+09	3 22 + 0 07	20.40			
		S	66 ± 0.9	3 85 + 0 12	26 59			
19	Mo-0xv50	0	0.0 ± 0.5	1 71 + 0 01	7 72	0.0161	1.07.34	420
15	Bulk MoS-	S	66+09	2 /3 + 0 02	20.08] 0.0101	1.07.54	420
	Durk W032	Mo	6.6 ± 0.9	2.45 ± 0.02	20.00			
		S	6.6 ± 0.9	3.85 + 0.12	21.00			
20	Mo-0xv50	0	0.0 ± 0.5	1 69 + 0.0	5 97	0.0125	1.00.06	/19.3
20	Bulk MoS		64+08	1.05 ± 0.0	10.16	0.0125	1.05.00	415.5
	BUIK 10032	Mo	6.4 ± 0.8	2.43 ± 0.01 3.21 ± 0.06	21 / 8			
		S	6.4 ± 0.8	3.21 ± 0.00 3.81 ± 0.12	21.40			
21		<u> </u>	0.4 ± 0.8	3.84 ± 0.12	6 27	0.0125	1.12.17	120 5 121 6
21	Dulk Mas		62+09	1.08 ± 0.02	10.52	0.0155	1.15.42	420.3 - 421.0
	BUIK IVIOS ₂	5	0.3 ± 0.8	2.43 ± 0.02	20.00			
			0.5 ± 0.8	3.21 ± 0.00	20.00			
		3	0.5 ± 0.8	5.04 ± 0.15				
22	Bulk MoS	ç	54+00	2 42 + 0 0	15 70	0 0 2 2 4	1.18.10	121 5 - 122 5
22	DUIK IVIOS ₂	3	5.4 ± 0.9	2.42 ± 0.0	10.70	0.0224	1.10.19	421.5 - 422.5
		s Ivio	5.4 ± 0.9	3.20 ± 0.03 3.81 ± 0.15	24 52			
22	Pulk MoS	s	5.4 ± 0.9	3.01 ± 0.13	15 14	0.0201	1.71.72	120 1 121 0
25		Mo	5.3 ± 0.8 5.3 + 0.8	2.42 ± 0.0 3 19 + 0 0/	18 69	0.0201	1.21.25	420.4 421.3
		s s	5.3 ± 0.8 5.3 + 0.8	3 82 + 0 15	24 /1			
24	Bulk MoS-		5.5 ± 0.8	2 42 + 0.15	15 15	0 0196	1.22.31	420 8 - 423 3
27		Mo	5.5±0.0 55+0.8	2.72 ± 0.0 3 19 + 0 02	18 78	0.0100	1.27.31	420.0 423.3
		S	5.5 ± 0.8	3 81 + 0 16	24 54			
		5	(Ak= 3 -	10 2 Δ ⁻¹ H ₂ S/H ₂ /	He gasses	1		
25	Bulk MoS	S	5.3 ± 0.8	2.42 + 0.0	14 34	0.0202	1:35.12	419.6 - 423 4
23	Durk Wi002	Mo	5.3 ± 0.8	3 19 + 0 04	17.81	0.0202	1.55.12	415.0 425.4
		S	5.3 + 0.8	3.81 + 0.16	24.20			
	Mo-550	<u> </u>	52+07	2 42 + 0.0	14 44	0 0192		
	10-350	Mo	3.2 ± 0.7 3.5 ± 0.5	3 19 + 0 04	14 74	0.0152		
		S	1.7 ± 0.5	3.15 ± 0.04 3.77 ± 0.28	12.26			
26	Bulk MoSa		5.3 ± 0.2	2 42 + 0 0	13 76	0 0197	1.42.22	419 9 - 423 7
20		Mo	5.3 ± 0.7 5 3 + 0 7	2.72 ± 0.0 3 19 + 0 0/	17 /0	0.0197	1.43.37	713.7 723.7
		۲۹۱۵ ۲	5.5 ± 0.7 5 2 + 0 7	3 81 + 0 16	24 22			
	Mo-550		5.5 ± 0.7 5 2 + 0 7	2 42 + 0.10	13 26	0 0187		
	0-330	Mo	3.2 ± 0.7 3 5 + 0 5	2.72 ± 0.0 3 10 + 0 01	1/ 25	0.0107		
		۲۹۱۵ ۲	5.5 ± 0.5 1 7 + ∩ 2	3.15 ± 0.04	12 62			
		5	1.7 ± 0.2	3.70 ± 0.27	12.05			

27	Bulk MoSa	S	53+07	2 42 + 0 0	13 61	0 0187	1.40.01	423 6 - 423 7
92	Buiktinooz	Mo	53+07	3 19 + 0 04	17 12	0.0107	1110101	12010 12017
93		S	53+07	3 81 + 0 16	24 21			
	Mo-S50	<u> </u>	52+07	2 42 + 0 0	13 74	0 0175		
	1110 000	Mo	35+05	3 19 + 0 04	14.05	0.01/0		
		S	17+02	3 77 + 0 28	12 29			
			Stage 6	$(\Lambda k = 3.2 - 11 Å^{-1})$	¹ He gas)			
28	Mo-Bare	s	45+05	2 41 + 0 05	11 71	0 0173	1.28.14	345 2 - 422
20	No bare	Mo	4.5 ± 0.5 4.5 ± 0.5	3 19 + 0 04	15 53	0.01/0	1.50.14	545.2 422
		s	$\frac{1.5}{2} = 0.5$	3 77 + 0 13	13.55			
		s	2.5 ± 0.3 25 ± 0.3	4 61 + 0 02	16 40			
		s	10.0 ± 0.0	5 32 + 0 29	28 50			
	Mo-S50	<u> </u>	42+05	2 41 + 0 03	11 58	0.0178		
	1110 330	Mo	28 ± 0.3	3 18 + 0 03	12 53	0.0170		
		S	14+02	3 75 + 0 30	11 54			
		s	1.4 ± 0.2 1 4 + 0 2	4 64 + 0 01	12.82			
		s	70+0.8	534 ± 0.01	26.78			
29	Mo-Bare	S	43+05	2 41 + 0 05	10.80	0.0182	2.02.22	238 4 - 325 4
23	We bare	Mo	4.3 ± 0.5 4.3 ± 0.5	3 17 + 0 04	14 22	0.0102	2.07.27	230.4 323.4
		S	22+02	3 77 + 0 13	12 10			
		s	2.2 ± 0.2 2 2 + 0 2	4 63 + 0 0	15 74			
		s	87+09	5 32 + 0 29	27 97			
	Mo-S50	<u> </u>	41+04	2 41 + 0 03	10 70	0.0186		
	1110 000	Mo	27+03	3 18 + 0 03	11 31	0.0100		
		S	14+01	3 75 + 0 30	10 73			
		s	1.1 ± 0.1 1.4 ± 0.1	4 66 + 0 01	11 51			
		s	68+07	5 33 + 0 27	26 54			
30	Mo-Bare	S	43+05	2 42 + 0 05	9.85	0 0189	2.12.08	172 3 - 224
		Mo	4.3 ± 0.5	3.18 ± 0.12	12.96	0.0100		_/
		S	2.1 ± 0.2	3.77 ± 0.13	11.65			
		S	2.1 ± 0.2	4.64 ± 0.01	14.49			
		S	8.5 ± 0.9	5.32 ± 0.29	27.47			
	Mo-S50	S	4.0 ± 0.4	2.41 ± 0.03	9.76	0.0194		
		Мо	2.7 ± 0.3	3.18 ± 0.03	10.11			
		S	1.3 ± 0.1	3.74 ± 0.31	10.22			
		S	1.3 ± 0.1	4.67 ± 0.02	10.28			
		S	6.7 ± 0.7	5.33 ± 0.26	25.99			
			(∆k	= 3.3 - 11 Å ⁻¹ , He	e gas)			
31	Mo-Bare	S	4.3 ± 0.5	2.42 ± 0.05	9.53	0.0188	2:24:20	116.4 - 160.9
		Мо	4.3 ± 0.5	3.18 ± 0.11	12.30			
		S	2.2 ± 0.2	3.77 ± 0.13	11.56			
		S	2.2 ± 0.2	4.66 ± 0.03	14.63			
		S	8.6 ± 1.0	5.30 ± 0.27	26.80			
			(∆k	= 3.2 - 11 Å ⁻¹ , He	e gas)			
	Mo-S50	S	4.0 ± 0.5	2.41 ± 0.03	9.25	0.0209		
		Мо	2.7 ± 0.3	3.18 ± 0.03	9.38			
		S	1.3 ± 0.1	3.74 ± 0.31	10.03			
		S	1.3 ± 0.1	4.68 ± 0.03	9.39			
		S	6.7 ± 0.8	5.32 ± 0.26	25.79			

			(∆k	= 3.3 - 11 Å ⁻¹ , Ηε	e gas)				
32	Mo-Bare	S	4.3 ± 0.5	2.42 ± 0.05	9.21	0.0191	2:33:33	79 - 109.2	
		Мо	4.3 ± 0.5	3.18 ± 0.11	11.77				
		S	2.2 ± 0.3	3.77 ± 0.13	11.37				
		S	2.2 ± 0.3	4.67 ± 0.03	13.45				
		S	8.7 ± 1.0	5.29 ± 0.26	26.20				
			(Δk=	3.4 – 11.5 Å ⁻¹ , H	le gas)				
	Mo-S50	S	4.1 ± 0.6	2.41 ± 0.04	8.88	0.0248			
		Мо	2.7 ± 0.4	3.18 ± 0.03	8.46				
		S	1.4 ± 0.2	3.73 ± 0.36	10.09				
		S	1.4 ± 0.2	4.70 ± 0.05	8.66				
		S	6.8 ± 0.9	5.29 ± 0.23	23.89				
			(∆k	= 3.3 - 11 Å ⁻¹ , He	e gas)				
33	Mo-Bare	S	4.4 ± 0.5	2.42 ± 0.06	9.05	0.0192	2:41:14	58.7 - 74	
		Мо	4.4 ± 0.5	3.18 ± 0.11	11.47				
		S	2.2 ± 0.3	3.77 ± 0.14	11.28				
		S	2.2 ± 0.3	4.67 ± 0.04	12.70				
		S	8.7 ± 1.0	5.29 ± 0.26	26.04				
			(∆k	= 3.4 - 11 Å ⁻¹ , He	e gas)				
	Mo-S50	S	4.2 ± 0.5	2.42 ± 0.04	9.22	0.0176			
		Мо	2.8 ± 0.3	3.17 ± 0.03	8.85				
		S	1.4 ± 0.2	3.74 ± 0.31	10.51				
		S	1.4 ± 0.2	4.70 ± 0.05	9.03				
		S	4.1 ± 0.8	5.28 ± 0.22	24.02				
			(Δk	= 3.3 - 11 Å ⁻¹ , He	e gas)				
34	Mo-Bare	S	4.4 ± 0.5	2.42 ± 0.06	8.89	0.0194	3:01:12	31.6 - 55.4	
		Мо	4.4 ± 0.5	3.18 ± 0.11	11.17				
		S	2.2 ± 0.3	3.76 ± 0.13	11.18				
		S	2.2 ± 0.3	4.68 ± 0.05	12.52				
		S	8.7 ± 1.0	5.28 ± 0.25	25.49				
	Mo-S50	S	4.2 ± 0.5	2.42 ± 0.04	8.88	0.0191			
		Мо	2.8 ± 0.3	3.18 ± 0.03	8.46				
		S	1.4 ± 0.2	3.73 ± 0.36	10.09				
		S	1.4 ± 0.2	4.70 ± 0.05	8.66				
		S	7.0 ± 0.8	5.29 ± 0.23	23.89				

At stage 6, Hamilton test (ref. 58) was applied by imposing k- and R-ranges on the same values in order to test two different models on the same EXAFS data independently and both of them give almost similar results (same fitting parameters)

Table 2S: Ni K-edge EXAFS fitting parameters of NiMoPILC (in situ)

TUDIC	Tuble 25. Write edge Extra 5 method parameters of Million Le (million)										
No.	Fitting	Back	Ν	R(Å)	σ ² (Å ²)	R-	Time-	temp in °C			
	model	scatterer			x 10 ⁻³	factor	lapse				
			Stage 4 (Δk =	= 3 - 11 Å ⁻¹ , H ₂ S	/H ₂ /He gas	ses)					
1	NiMoO ₄	Ο	5.2 ± 0.5	2.03 ± 0.02	7.56	0.008	1:13:11	127.8 - 159.5			
		Ni	1.7 ± 0.2	3.02 ± 0.05	19.98						
		Mo	1.7 ± 0.2	3.19 ± 0.05	19.46						
		Mo	1.7 ± 0.2	3.78 ± 0.0	11.94						
2	NiMoO ₄	Ο	5.2 ± 0.5	2.02 ± 0.02	7.95	0.0112	1:15:48	176.3 - 193.3			
		Ni	1.7 ± 0.2	3.01 ± 0.04	20.55						
		Mo	1.7 ± 0.2	3.20 ± 0.06	19.61						
		Mo	1.7 ± 0.2	3.77 ± 0.07	11						

3	NiMoO ₄	O Ni Mo Mo	$\begin{array}{c} 5.1 \pm 0.5 \\ 1.7 \pm 0.2 \\ 1.7 \pm 0.2 \\ 1.7 \pm 0.2 \end{array}$	$\begin{array}{c} 2.02 \pm 0.02 \\ 3.01 \pm 0.05 \\ 3.19 \pm 0.05 \\ 3.78 \pm 0.07 \end{array}$	8.43 19.01 19.65 14.52	0.0086	1:23:38	210.1 – 294.7
4	NiMoO ₄	O Ni Mo Mo	$5.2 \pm 0.6 \\ 1.7 \pm 0.2 \\ 1.7 \pm 0.2 \\ 1.7 \pm 0.2 \\ 1.7 \pm 0.2$	$\begin{array}{c} 2.01 \pm 0.01 \\ 3.02 \pm 0.05 \\ 3.21 \pm 0.07 \\ 3.71 \pm 0.01 \end{array}$	9.93 25.04 18.95 15.38	0.0118	1:26:14	311.6 - 328.3
5	NiMoO ₄	O Ni Mo Mo	$(\Delta k=3 - 5.4 \pm 0.7)$ 1.8 ± 0.3 1.8 ± 0.3 1.8 ± 0.3	$11.6 \text{ A}^{-1}, \text{ H}_2\text{S/H}_2$ 2.01 ± 0.0 3.02 ± 0.05 3.18 ± 0.04 3.74 ± 0.04	/He gasses 9.89 25.79 14.83 20.03	0.0169	1:27:33	345.1
6	NiMoO ₄	O Ni Mo Mo	$5.6 \pm 0.9 \\ 1.9 \pm 0.3 \\ 1.9 \pm 0.3 \\ 1.9 \pm 0.3$	$\begin{array}{c} 1.99 \pm 0.01 \\ 3.05 \pm 0.08 \\ 3.20 \pm 0.06 \\ 3.69 \pm 0.01 \end{array}$	11.34 27.62 17.94 16.48	0.02	1:28:51	362
7	NiMoO ₄	O Ni Mo	$(\Delta k=3 - 5.8 \pm 0.5)$ 1.9 ± 0.2 1.9 ± 0.2 1.9 ± 0.2	$12 \text{ A}^{-1}, \text{ H}_2\text{S}/\text{H}_2/2$ 2.01 ± 0.01 3.01 ± 0.05 3.18 ± 0.04 3.77 ± 0.06	He gasses) 11.62 26.17 19.66 14.83	0.0096	1:30:09	378.9
8	NiMoO ₄	O Ni Mo Mo	$3.5 \pm 0.4 \\ 1.2 \pm 0.1 \\ 1.2 \pm 0.1 \\ 1.2 \pm 0.1$	$\begin{array}{c} 2.02 \pm 0.02 \\ 3.03 \pm 0.06 \\ 3.23 \pm 0.09 \\ 3.71 \pm 0.01 \end{array}$	6.26 21.3 11.33 15.12	0.0197	1:31:28	395.4
9	NiMoO ₄	O Ni Mo	Stage 5 (∆k= 4.8 1.6 1.6	$\begin{array}{c} 2.8-10 \text{ Å}^{-1} \text{, H}_2 \text{S} \\ 1.99 \pm 0.01 \\ 3.0 \pm 0.03 \\ 3.16 \pm 0.02 \end{array}$	S/H ₂ /He ga 11.18 16.69 17.64	usses) 0.0199	1:34:51	414.2
10	NiO Ni ₃ S ₂	O S Ni	$(\Delta k=3-2)$ 1.2 1.2	$11 \text{ A}^{-1}, \text{ H}_2\text{S}/\text{H}_2/2$ 1.99 ± 0.1 2.3 ± 0.05 2.51 ± 0.01	He gasses) 3.79 23.06 12.18	0.0197	1:36:41	418.1
11	NiO Ni ₃ S ₂	O S Ni S	(Δk= 3 – 4.5 1.6 1.6 1.6	$\begin{array}{c} 12 \text{ A}^{-1}, \text{ H}_2\text{S}/\text{H}_2/\text{.}\\ 2.07 \pm 0.02\\ 2.17 \pm 0.08\\ 2.55 \pm 0.05\\ 3.62 \pm 0.06 \end{array}$	He gasses) 12.58 10.50 19.91 12.72	0.0111	1:39:18	419.5
12	NiO Ni ₃ S ₂	O S Ni S	$(\Delta k=3-5.5)$	$\begin{array}{c} 10.8 \ \text{\AA}^{-1}, \ H_2S/H_2\\ 2.05 \pm 0.04\\ 2.16 \pm 0.09\\ 2.54 \pm 0.04\\ 3.58 \pm 0.09 \end{array}$	/He gasses 14.76 12.5 22.65 14.21	0.0183	1:41:15	421.9
13	NiO Ni ₃ S ₂	O S Ni S	$(\Delta k=3-5.5)$ 2.3 2.3 2.3	11 Å ⁻¹ , $H_2S/H_2/$ 2.1 ± 0.01 2.2 ± 0.05 2.55 ± 0.05 3.62 ± 0.06	He gasses) 19.99 11.28 22.46 13	0.0151	1:44:31	423.2
14	NiO Ni ₃ S ₂	O S Ni S	5.6 ± 0.4 2.8 2.8 2.8	$\begin{array}{c} 2.04 \pm 0.03 \\ 2.04 \pm 0.05 \\ 2.07 \pm 0.18 \\ 2.58 \pm 0.08 \\ 3.66 \pm 0.01 \end{array}$	6 13.65 20.99 17.34	0.0133	1:47:08	424.1

			$(\Delta k=3.5)$	– 11 Å ⁻¹ , H ₂ S/H ₂	/He gasses)		
15	NiO	Ο	2	2.01 ± 0.08	15.58	0.0235	1:49:45	424.7
	Ni-Bare	S	1.6	2.22 ± 0.03	6.55			
		Мо	0.8	2.83 ± 0.08	12.92			
		S	0.8	3.55 ± 0.0	3.78			
			(∆k= 3 –	10 Å ⁻¹ , H ₂ S/H ₂ /	He gasses)		_	
16	NiO	Ο	1	2.01 ± 0.08	7.91	0.0199	1:52:21	425 - 425.2
	Ni-Bare	S	2.4	2.21 ± 0.03	0.74			
		Мо	1.2	2.80 ± 0.05	11.96			
		S	1.2	3.53 ± 0.02	15.60			
			$(\Delta k=3.5)$	- 12 Å ⁻¹ , H ₂ S/H ₂	/He gasses)	_	
17	NiO	Ο	1	2.0 ± 0.09	19.30	0.0185	1:57:35	425.3
	Ni-Bare	S	2.6	2.20 ± 0.01	9.99			
		Мо	1.3	2.76 ± 0.01	11.12			
		S	1.3	3.48 ± 0.07	10.06			
			$(\Delta k = 3.7)$	- 11 Å ⁻¹ , H ₂ S/H ₂	/He gasses)	_	
18	NiMoS	S	3.2 ± 0.4	2.19 ± 0.15	10.63	0.0094	2:00:12	425.4 - 426.3
	(1010)	Mo	1.1 ± 0.1	2.74 ± 0.06	6 88			
	(Mo	11 = 0.1 11 + 01	2.93 ± 0.07	7.62			
		S	2.1 ± 0.3	3.53 ± 0.12	9.66			
		_	$(\Delta k=3.4)$	– 11 Å ⁻¹ , H ₂ S/H ₂	/He gasses)		
19	NiMoS	S	2.7 ± 0.4	2.19 ± 0.15	8.16	0.0163	2:12:18	426.1 - 426.6
	(1010)	Мо	0.9 ± 0.1	2.76 ± 0.04	5 34			
	(,	Mo	0.9 ± 0.1 0.9 ± 0.1	2.70 ± 0.01 2.94 + 0.06	6.93			
		S	1.8 ± 0.2	3.52 ± 0.12	8.60			
		5	1.0 ± 0.2 Stage 6	$\Delta k = 3 - 11 \text{ Å}^{-1}$	He gas)			
20	Ni-Bare	S	24+03	22 + 0.01	, 110 gas) 6 62	0.0129	2.38.04	1996 - 4272
20	TH Dure	Mo	1.2 ± 0.1	2.2 ± 0.01 2 76 + 0.01	9.03	0.012)	2.50.01	199.0 127.2
		Ni	1.2 ± 0.1 1.2 ± 0.1	3.14 ± 0.01	8 4 5			
		S	1.2 ± 0.1	3.52 ± 0.03	1.16			
	NiMoS	<u> </u>	$\frac{1.2}{2.7+0.3}$	2.2 ± 0.16	7 33	0.0102	-	
	(1010)	Mo	2.7 ± 0.3	2.2 = 0.10 2.78 ± 0.02	1 30	0.0102		
	()	Mo	0.9 ± 0.1 0.9 ± 0.1	2.76 ± 0.02 2.96 ± 0.04	4.30			
		S	0.9 ± 0.1 1 8 ± 0 2	2.50 ± 0.04 3.52 ± 0.12	5 91			
21	Ni-Bare	S	1.0 ± 0.2 2 7 ± 0 3	3.52 ± 0.12 2 2 + 0.02	5.88	0.0146	2.57.39	86.2 - 188.7
21	INI-Daic	Mo	2.7 ± 0.3 1 3 + 0 2	2.2 ± 0.02 2 76 + 0 0	7.87	0.0140	2.37.37	00.2 - 100.7
		Ni	1.3 ± 0.2 1 3 + 0 2	3.12 ± 0.03	7.07			
		S	1.3 ± 0.2 1 3 + 0 2	3.12 ± 0.03 3.51 ± 0.04	0.91			
	NiMoS	<u> </u>	$\frac{1.5 \pm 0.2}{3.0 \pm 0.3}$	$\frac{3.31 \pm 0.01}{2.21 \pm 0.06}$	6.64	0.0153	-	
	$(\bar{1}010)$	Ma	3.0 ± 0.3	2.21 ± 0.00	2.07	0.0155		
	(1010)	Mo	1.0 ± 0.1 1.0 ± 0.1	2.70 ± 0.04 2.05 ± 0.06	2.25			
		S S	1.0 ± 0.1 2.0 ± 0.2	2.93 ± 0.00 3.51 ± 0.13	5.55			
22	Ni Bara	S	2.0 ± 0.2 2.7 ± 0.4	3.31 ± 0.13 2.21 ± 0.02	5.51	0.0175	2.17.14	12 81 2
<u> </u>		Mo	2.7 ± 0.4 1.4 ± 0.2	2.21 ± 0.02 2 75 + 0 0	7 47	0.01/5	3.1/.14	- 101.Z
		Ni	1.7 ± 0.2 1.4 ± 0.2	2.75 ± 0.0 3.12 ± 0.03	8 13			
		L 11	1.7 ± 0.2 1.4 ± 0.2	3.12 ± 0.03 3.51 ± 0.04	0.15			
	NiMas	<u> </u>	$\frac{1.7 \pm 0.2}{3.0 \pm 0.4}$	$\frac{3.31 \pm 0.04}{2.21 \pm 0.17}$	6.18	0.0185	_	
	7010)	ы М-	3.0 ± 0.4	2.21 ± 0.17	0.10	0.0105		
	(1010)	IV10	1.0 ± 0.1	2.70 ± 0.04	2.8/			
			1.0 ± 0.1	2.94 ± 0.00	5.01			
		5	2.0 ± 0.2	3.31 ± 0.13	3.08			

continued								
23	Ni-Bare	S	2.8 ± 0.4	2.21 ± 0.02	5.5	0.0177	3:43:13	29.6 - 40.4
		Mo	1.4 ± 0.2	2.75 ± 0.0	7.36			
		Ni	1.4 ± 0.2	3.12 ± 0.03	7.8			
		S	1.4 ± 0.2	3.51 ± 0.04	0.61			
	NiMoS	S	3.0 ± 0.3	2.22 ± 0.17	5.79	0.0155		
	(1010)	Mo	1.0 ± 0.1	2.76 ± 0.04	2.86			
		Ni	1.0 ± 0.1	2.94 ± 0.06	3.53			
		S	2.0 ± 0.2	3.52 ± 0.13	4.88			

At stage 6, Hamilton test (ref. 58) was applied by imposing k- and R-ranges on the same values in order to fit two different models on the same EXAFS data independently and both of them give almost similar results (same fitting parameters)

Figure 1S: Distribution profile of gas products (H₂O, SO₂) and inputs (He, H₂, H₂S) during *in situ* (a) Mo and (b) Ni K-edge XAS measurement using MS

Figure 2S: HRTEM images (left) at two different locations and their respective slab length distributions (right) of sulfided NiMoS₂/Al-PILC catalyst.

Figure 3S: Benzene and guaiacol adsorption on the basal plane of MoS₂ in planar configuration. The distance is from the center of mass of benzene and guaiacol to the z position of the top sulfur layer

	Mo-Bare	Ni-Bare	Mo-S50	NiMoS	Horiz-	Vert-basal	INS
				(1010)	basal		(ref. 25)
v(C-C)	1512	1499, 1579,	1499,	1469, 1590,	1512,	1505,	-
		1601	1578,	1615	1593,	1593,	
			1620		1608	1612	
$\gamma(CH_3)$	1459	1451, 1458	1450,	1455	-	1461	1463
			1458				
$v(C-C) + \gamma(CH_3)$	1443, 1450	1446	1449	1448	1446, 1459	1452	-
$\gamma(CH_3)$	-	-	-	-	1439	1447	-
δ(CH ₃)	-	1434	1436	1425, 1435	1429	1430	_
$v(C-C) + \delta(COH)$	1415, 1423	-	-	-	-	-	-
v(C-C)	1335, 1366	1362	1368	1366	1397	1390	1378
δ(C-H)	1263	1290	1293	1296	1295	1297	-
v(C-OH) + v(C-	-	-	-	-	1272	1236,	-
OCH ₃)						1273	
$v(C-OCH_3)$	1205	1266	1270	-	1243		-
<i>v</i> (C-OH)	1187	1221	1191	1251	-	-	-
$v(C-OCH_3)$	-	-	-	1205	-	-	-
$\delta(CH_3)$	1174	1180	1180	1173	1179	1184	-
δ(C-H)	-	1169	1169	1168	1167	1164	1164
δ(CCC) ip	-	1156	1159	1157	1154	-	-
<i>v</i> (C-OH)	-	-	1148	-	-	-	-
δ(O-CH ₃)	1143	1142	1140	1142	1139	1142	1043
δ(CCC) ip	1140	-	-	1102	1101	1100	-
<i>v</i> (C-OH)	1089	1096	1085	-	-	-	-
δ(CCC) ip	990, 1033	1055	1059	1050	1055	1069	-
$\delta(CCC)$ ip + $\nu(O-$	983	1028	1025	1009	1041	1042	-
CH ₃)							
τ(C-H)						953	
δ(CCC) oop	826, 898	833, 918,	827, 912,	830, 913,	895, 947	894	846,

Table 3S: Calculated vibrational frequencies (cm⁻¹) of guaiacol adsorbed on several NiMoS₂ sites

		965	965	963			926, 963
δ(CCC) ip	-	891	-	824	832	830	-
δ(CCC) oop	_	-	-	-	821	816	_
$\delta(CCC)$ ip	787, 788	751	750, 814	771	764	765	752
δ(C-H)	_	748	741	742	745	746	_
δ(CCC) oop	747	713	-	-	721	718	-
$\delta(CCC)$ ip	728	-	-	-	_	-	_
δ(C-OH)	692	-	676	-	-	-	-
δ(CCC) oop	611	-	-	-	583	-	-
$\delta(CCC)$ ip	557	574	581	600	-	584	557
δ(CCC) oop	-	559	558	558	570	571	-
δ(C-OH)	-	548	-	-	-	-	-
ρ(C-O)	-	-	532	538	524	524	536
δ(CCC) ip	471, 476,	492	503	508	498	492	495
	516						
δ(CCC) oop	-	461	468	447	471	467	461
δ(C-OH)	-	-	-	437	-	-	-
γ(C-O)	-	-	-	412	-	-	-
δ(CCC) oop	403	-	-	-	-	-	-
δ(C-OH)	-	-	-	-	382	370	-
v(Mo-O) + v(Mo-C)	356	-	-	-	-	-	-
γ(C-O)	-	334	361		350	337	-
δ(CCC) oop	302, 333	323	344	314	317	319	314, 346
τ(O-CH ₃)	-	271	268	-	-	266	-
γ(C-O)	-	-	258	268	-		
v(Mo-O)	254	-	-	-	-	-	-
τ(O-CH ₃)	234	-	-	243	249	-	252
γ(C-O)	227	231	-	-	233	227	-
τ(O-CH ₃)	-	-	221	-	-	-	-
τ(C-O)	-	211	-	206	195	192	206
δ(O-CH ₃)	173	-	-	190	169	126	-
δ (CCC) oop	137	138	149	-	-	-	147

v---stretching, δ ---bending, γ ---scissoring, ω ---wagging, τ ---twisting, torsion, ρ ---rocking, oop---out-of-plane, ip---in-plane. Vibrational mode descriptions obtained using animations in Chemcraft.