Electronic Supplementary Information for Improved Reweighting Protocols for Variationally Enhanced Sampling Simulations with Multiple Walkers

Baltzar Stevensson^{*}, and Mattias Edén^{*}

Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.

*Corresponding authors. E-mail: *baltzar.stevensson@mmk.su.se*; *mattias.eden@mmk.su.se*

Contents

- **1.** Table S1. Computational Reweighting Demands.
- **2.** Figure S1. Alanine Dipeptide: Convergence Data Spread for $s = \phi$.
- **3.** Figure S2. Alanine Dipeptide: Convergence Data Spread for $s = \psi$.
- 4. Figure S3. Analytical Potential Model: Convergence Data Spread.
- 5. Figure S4. Analytical Potential Model: Convergence using $t_{\min} = 100$ ps.

Simulation time $\mathcal{T} = \begin{bmatrix} 90 \text{ ps} & 900 \text{ ps} & 900 \end{bmatrix}$	$\overline{0 \text{ ps}}$
Number of time points $N_{\mathcal{T}} = \begin{vmatrix} 100 & 1000 & 1000 \end{vmatrix}$	00
$M_{\Sigma}^{t}, M_{w}^{t}$ $N_{\rm F} N_{\mathcal{T}} (N_{\mathcal{T}} + 1) N_{W} / 2$ 0.012 s 1.2 s 120	s
$M_{\Sigma}^{\mathcal{T}}, M_{w}^{\mathcal{T}}$ $N_{F}N_{\mathcal{T}}(N_{\mathcal{T}}+1)N_{W}N_{iter}$ 0.23 s 23 s 230	0 s
$M_{\Sigma}^{\overline{\mathrm{TP}}}, M_{\Sigma}^{\mathrm{VES}} \qquad N_{\mathrm{F}} N_{\mathcal{T}} N_{s} \qquad 0.056 \text{ s} 0.56 \text{ s} 5.6$	s

Table S1. Computational Efforts for Reweighting.^a

^a Number of floating-point operations (N_{op}) associated with each reweighting protocol along with the CPU times required for the reweighting results of Fig. **3**a with $N_W = 4$. Here, $N_F = 12$ is the number of Fourier coefficients [eqn (14)], $N_{iter} = 10$ is the number of iterations to solve eqn (22), and $N_s = 1000$ is the total number of collective-variable samples/coordinates. The $M_{\Sigma}^{\mathcal{T}}$ and $M_w^{\mathcal{T}}$ methods are not suitable for "on-the-fly" calculations because they require consecutive re-evaluations of c(t) at all time points $t \leq \mathcal{T}$ for each additional sampled time point, whereas the M_{Σ}^t , M_w^t , M_{Σ}^{TP} , and M_{Σ}^{VES} methods require only $N_{op}/N_{\mathcal{T}}$ operations. The CPU time periods required to calculate c(t) (rightmost columns) in serial mode were obtained on an Intel[®] CoreTM i7-9700K CPU (3.60 GHz) desktop computer running Linux Ubuntu (version 18.04) and compiled using GNU Fortran (version 7.5.0) with optimization and double precision.

Fig. S1. Convergence curves for $s = \phi$ as in Fig. 3 (left panel) and the zoomed counterparts of Fig. 4 (right panel) but plotting the rms $(\Delta F - \Delta F_{ref})$ results along with the $\pm \sigma$ spread among the (a–d) 16, (e, f) 8 and (g, h) 6 independent simulations for each as-indicated reweighting and walker ensemble.

Fig. S2. Convergence curves for $s = \psi$ as in Fig. 3 (left panel) and the zoomed counterparts of Fig. 4 (right panel) but plotting the rms($\Delta F - \Delta F_{ref}$) results along with the $\pm \sigma$ spread among the (a–d) 16, (e, f) 8 and (g, h) 6 independent simulations for each as-indicated reweighting and walker ensemble.

Fig. S3. (a, b) $D_{\text{KL}}(\mathcal{T})$ convergence plots as in Fig. 6b,c but also including the $\pm \sigma$ data variabilities among 32 independent simulations for each reweighting protocol for $N_s = 6$ (left panel) and $N_s = 48$ (right panel). (c–j) The result from each as-indicated reweighting method plotted separately.

Fig. S4. (a, c) $D_{\rm KL}(\mathcal{T})$ convergence plots as in Fig. 6b,c for (a) $N_s = 6$ and (c) $N_s = 48$ bins [eqn. (35)] but additionally including the results after excluding all data with $t < t_{\rm min} = 100$ ps for the $M_{\Sigma}^{\rm TP}$ and $M_{\Sigma}^{\rm VES}$ schemes in the reweighting, shown by dashed grey and black curves, respectively. (b, d) Zooms around the near-convergence region, i.e., the black dotted rectangles in (a, c). The value $t_{\rm min} = 100$ ps ensured optimal reweighting performance of both CV-integration-based $M_{\Sigma}^{\rm VES}$ and $M_{\Sigma}^{\rm TP}$ methods, after which they essentially indistinguishable convergence curves for simulation periods $\mathcal{T} \leq 400$ ps, and requiring $\mathcal{T} = 230$ ps ($N_s = 6$) and $\mathcal{T} = 270$ ps ($N_s = 48$) to reach convergence.