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Figure S1. Schematic of the TPD apparatus coupled to a GC-TCD. The individual components 
are labeled as: A – sample cell, B – ancillary equipment ports, C – sample manifold, and D – GC-
TCD.

The green valves represent manual bellows valves. Blue and yellow valves are pneumatically 

actuated (by color) bellows valves and are operated by a double-pole double-throw switch. When 

actuated together (by color), the valves turn the gas line outlined in red into a flow cell at the 

interface between the manifold and GC. The TCD detector produces a 0-1 VDC signal which is 

fed into an analog-to-digital converter whereby the signal can be read by a computer.
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Table S1. Relevant parameters for GC-TCD

Gas Chromatography 
Parameters Value

Stationary Phase Hayesep T porous polymer (packed)
Column dimensions L = 2 m, i.d. = 2.2 mm
Mobile Phase UHP Helium
Mobile Phase flow rate (mL/sec) 0.529
Inlet Head Pressure (kPa) 58
Reference Gas flow rate (mL/sec) 2.53
Initial Oven Temperature (°C) 140
Initial Oven Hold Time (min) 1.5
Temperature Ramp Rate (°C/min) 40
Final Oven Temperature (°C) 250
Final Oven Hold Time (min) 5
Detector Temperature (°C) 175



S4

Figure S2. Rietveld refinement of the boehmite starting material XRD data. The initial 
orthorhombic structural model for boehmite was obtained from ICSD (59610) and converged with 
lattice parameters, a = 2.8551 Å, b = 12.3111 Å, and c = 3.7059 Å. The refinement converged with 
Rw = 0.1014 and R = 0.0809.
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Figure S3. Rietveld refinement of the γ-alumina XRD data derived from heating boehmite at 600 
°C for 8 hours. The initial cubic structural model for θ-alumina was obtained from ICSD (66559) 
and converged with lattice parameter, a = 7.8705 Å. The refinement converged with Rw = 0.0537 
and R = 0.0430.
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Figure S4. Rietveld refinement of the θ-alumina XRD data derived from heating boehmite at 1050 
°C for 8 hours. The initial monoclinic structural model for θ-alumina was obtained from ICSD 
(82504) and converged with lattice parameters, a = 11.8401 Å, b = 2.9018 Å, c = 5.6190 Å, and β 
= 103.817°. The refinement converged with Rw = 0.1039 and R = 0.0791.



S7

Figure S5. Rietveld refinement of the α-alumina XRD data derived from heating boehmite at 1200 
°C for 12 hours. The initial trigonal structural model for α-alumina was obtained from ICSD 
(10425) and converged with lattice parameters, a = 4.76102 Å and c = 12.9985 Å. The refinement 
converged with Rw = 0.0862 and R = 0.0650.
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Figure S6. TGA-DSC for the calcination of boehmit to δ-alumina. The black trace (left axis) 
represents the fractional weight of the starting material. The corresponding DSC is shown in red 
(right axis).
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Figure S7. TGA-DSC for the calcination of θ- to α-alumina. The black trace (left axis) represents 
the fractional weight of the starting material. The corresponding DSC is shown in red (right axis).
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Figure S8. Adsorption isotherms from the calibration of monolayer coverage for ethanol on the 
aluminas
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Figure S9. (a) TPD of monolayer coverage ethanol on the surface of δ-alumina. The observed 
peaks are labeled as A – ethylene, B – diethyl ether, and C – ethanol. (b) Numerically integrated 
peak areas obtained from the TPD as a function of temperature.

The TPD results displayed Figure S9 from ethanol adsorbed on the surface of δ-alumina clearly 
show that the temperature at which diethyl ether and ethylene form is consistent with the results 
reported previously for γ-alumina. At low temperatures, the gas phase signal from dissociated 
ethanol on δ-alumina is reduced appreciably in comparison to that from γ-alumina. This means 
there is a greater number of the surface sites on δ-alumina where ethanol is more tightly bound at 
low temperatures (e.g., chemisorbed ethoxide) than there are on γ-alumina. The 27Al NMR results 
indicate that δ-alumina has a greater concentration of AlV sites relative to the γ-phase but, perhaps 
during the calcination additional under-coordinated sites which are dehydroxylated also form. As 
the dissociated ethanol signal plateaus near 175 °C, diethyl ether is observed. Ethylene formation 
is detected at temperatures greater than 225°C which is consistent with γ-alumina, suggesting 
similar mechanisms for dehydration from an intermediate state. Although the surface of the δ-
phase may contain more Al3+ reactive sites than the γ-phase, the reduced surface area appears to 
limit the total ethylene production at 350 °C.



S12

Figure S10. TPD from monolayer coverage ethanol on the surface of α-alumina
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Figure S11. INS spectra of γ-alumina (blue) and 0.8 ML ethanol adsorbed on γ-alumina (orange) 
at 5 K in the low energy transfer regime (< 600 cm-1)


