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Supplementary file

Mechanism of polarization and voltage generation in boron nitride nano-ribbon

1. Theoretical background  

  In general, materials used for energy storage applications are categorized into four kinds based 
on polarizability: ferroelectric (has spontaneous electric polarization, and the direction of the 
electric polarization can be reversed by applying an external electric field), pyroelectric (has 
spontaneous electric polarization and the direction of the spontaneous electric polarization can be 
changed by cooling or heating), piezoelectric (the direction of the electric polarization can be 
changed by applying an external force), and dielectric (has no spontaneous electric polarization; 
however, until existence an external electric field, dielectric has electric polarization) [1,2]. The 
relationships between these materials can be explained based on figure 1.

Ferroelectric 
materials

Figure  1. The relationships between ferroelectric, pyroelectric, piezoelectric, and dielectric materials

  The total polarizability can be split into three parts: electronic, ionic, and dipolar polarizabilities 
[3,4]. In a solid crystal, the total polarizability of the particles (atoms, ions, and molecules) can be 
written as below [3,4]:

�⃗�𝑇𝑜𝑡𝑎𝑙 = �⃗�𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + �⃗�𝐼𝑜𝑛𝑖𝑐 + �⃗�𝐷𝑖𝑝𝑜𝑙𝑎𝑟 (1)

  Here,  is the particles’ total polarizability.  represents the electronic polarizability �⃗�𝑇𝑜𝑡𝑎𝑙 �⃗�𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐

and arises owing to the relative displacement between the shell (electrons) and core (protons). 
 depicts ionic polarizability and occurs due to the relative separation between anions and �⃗�𝐼𝑜𝑛𝑖𝑐
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cations).  points the dipolar polarizability and happens when the molecules with a permanent �⃗�𝐷𝑖𝑝𝑜𝑙𝑎𝑟

electric dipole moment exist (for example H2O).

2. Obtaining boron nitride nanoribbons polarization 

  Boron nitride nanoribbons (BNNRs) are classified as piezoelectric materials. The direction and 
magnitude of the electric polarization in these nanoribbons change when the external forces or 
stresses apply to the sample [5–7]. On the contrary, applying an external electric field to 
piezoelectric materials changes stress and creates strain [3]. These statements can explain why 
materials in a ferroelectric state are also piezoelectric (figure 1). To describe how the electric 
polarization vector creates in BNNR, the total polarizability of this material should be determined. 
In this respect, the share of  can be neglected because the rigid ion approximation is used �⃗�𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐

in the current study [8–10]. Thereby the contribution of the clamped ion term is zero, and there is 
no polarization between the shell and core. Moreover, the share of  is negligible because the �⃗�𝐷𝑖𝑝𝑜𝑙𝑎𝑟

frequency of BNNR is within the ultraviolet region [3,10–12]. Therefore, only  remains, and �⃗�𝐼𝑜𝑛𝑖𝑐

the total polarizability of BNNR ( ) can be rewritten as below:�⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙

�⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙 = �⃗�𝐼𝑜𝑛𝑖𝑐 (2)

  For more clarification concerning how BNNR can obtain polarization, the effects of piezoelectric 
domains should be described. Figure 2 illustrates a relaxed (stress-free) BNNR with width×length 
Å2 surface area (step 01) and the computation process of the total polarization vector (step 02-06). 
In each hexagonal cell (honeycomb cell), the cell ionic polarization vector is defined with respect 
to the relative distance between boron (B) and nitrogen (N) ions. It is worth mentioning that the 
polarization share of each B or N ion in each hexagonal cell is one-third (1/3). The sum of all ionic 
dipole moments in each hexagonal cell leads to creating the cell ionic polarization vector. The 
summation process performs using the principle of superposition of the vectors. Eq. (3) 
demonstrates how the cell ionic polarization vector obtains from ionic dipole moments in each cell 
(figure 2 step 02-03). 

 

�⃗�𝑐𝑒𝑙𝑙, 𝑗
𝐼𝑜𝑛𝑖𝑐 =

1
3

3

∑
𝑖 = 1

 

∑
𝛼

�⃗� 𝑖,𝛼
𝐼𝑜𝑛𝑖𝑐

(3)

  Here  is the cell ionic polarization vector, and the j represents the jth cell.  is the ionic �⃗�𝑐𝑒𝑙𝑙, 𝑗
𝐼𝑜𝑛𝑖𝑐 �⃗� 𝑖,𝛼

𝐼𝑜𝑛𝑖𝑐

dipole moment,  point to nitrogen ions in each hexagonal cell, and α containing a, b, and c 𝑖

represents the vector of ionic dipole moments for each nitrogen ion (step 03). The result of Eq. (3) 
for each stress-free BNNR hexagonal cell is almost zero because, based on the principle of 
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superposition of the vectors, all  remove each other (step 04). Therefore, the piezoelectric �⃗� 𝑖,𝛼
𝐼𝑜𝑛𝑖𝑐

domain vectors obtained from summation on  are also negligible (step 05). The piezoelectric �⃗�𝑐𝑒𝑙𝑙, 𝑗
𝐼𝑜𝑛𝑖𝑐

domain vectors calculate based on the below equation.

�⃗�𝑑𝑜𝑚𝑎𝑖𝑛, 𝑘
𝐼𝑜𝑛𝑖𝑐 =

𝑁

∑
𝑗 = 1

�⃗�𝑐𝑒𝑙𝑙, 𝑗
𝐼𝑜𝑛𝑖𝑐

(4)

  

  Where  is the piezoelectric domain polarization vector, and the k represents the kth �⃗�𝑑𝑜𝑚𝑎𝑖𝑛, 𝑘
𝐼𝑜𝑛𝑖𝑐

domain. N is the number of all hexagonal cells. Similarly, the total polarization vector of BNNR (
) is almost zero because obtained from summation on  based on the below equation �⃗�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 �⃗�𝑑𝑜𝑚𝑎𝑖𝑛, 𝑘
𝐼𝑜𝑛𝑖𝑐

(step 06):

�⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙 =

𝑁'

∑
𝑘 = 1

�⃗�𝑑𝑜𝑚𝑎𝑖𝑛, 𝑘
𝐼𝑜𝑛𝑖𝑐

(5)

  Here  is the number of all piezoelectric domains. Therefore, it can be concluded that for stress-𝑁'

free BNNR, the total polarizability is negligible.
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Figure 2. A relaxed (stress-free) BNNR with width×length Å2 surface area and the computation process of the total 
polarization vector. 

  However, when the stress or strain is applied to the sample as a consequence of external forces, 
the situations are entirely different. When BNNR is strained or buckled or rotated, the polarization 
vectors differ from stress-free BNNR. Figure 3 illustrates a buckled BNNR. This structure has 
been obtained after applying buckling to stress-free BNNR in figure 2. It is clear from the figure 
that after applying buckling, the  cannot neutralize each other (step 02); thereby, each cell can �⃗� 𝑖,𝛼

𝐼𝑜𝑛𝑖𝑐

earn  (step 03). The sum of all  leads to creating  (step 04 and 05), and by �⃗�𝑐𝑒𝑙𝑙, 𝑗
𝐼𝑜𝑛𝑖𝑐 �⃗�𝑐𝑒𝑙𝑙, 𝑗

𝐼𝑜𝑛𝑖𝑐 �⃗�𝑑𝑜𝑚𝑎𝑖𝑛, 𝑘
𝐼𝑜𝑛𝑖𝑐

summation on the domain polarization vectors, the  is obtained (step 06). Therefore, it can �⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙

be concluded that for buckled BNNR, both  and  have impressive values.�⃗�𝑑𝑜𝑚𝑎𝑖𝑛, 𝑘
𝐼𝑜𝑛𝑖𝑐 �⃗�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙
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Figure 3. A buckled BNNR. This structure has been obtained after applying buckling to stress-free BNNR in figure 2. The 
computation process of the total polarization vector has been indicated from step 01 to 06.

3. Calculating voltage based on boron nitride nanoribbons polarization

  The macroscopic electric field ( ) must be defined first to calculate the voltage. In BNNR as a �⃗�

piezoelectric material, the  arises from  in the absence of an external electric field. Using �⃗� �⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙

the famous theorem of electrostatics [3,13–16], it can be proved that the  caused by a uniform �⃗�

 is equal to the electric field in the vacuum of a fictitious surface charge density σ if the σ be �⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙

equal to .  where  is the unit normal to the surface. The  is drawn outward from the �̂� 𝑃𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙 �̂� �̂�
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polarized BNNR and is parallel with . Figure 4 depicts the polarized BNNR and two �̂�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙

uniformly charged parallel plates. The provided  by both structures is identical.�⃗�

𝝈 = +𝑷

𝝈 = −𝑷

(a)

(b)

Figure 4 (a) The polarized BNNR, and (b) two uniformly charged parallel plates. The provided  by both structures is �⃗�
identical.

  Using Gauss’s law [13,16], the  at each point between the plates is calculated as below:�⃗�

∮�⃗� ∙ 𝑑𝑠 =
𝑞𝑒𝑛𝑐

𝜀0

(6)

𝐸 =‒
𝑞𝑒𝑛𝑐

𝜀0𝐴
→  𝐸 =‒

𝜎
𝜀0

    
|𝜎| = |�⃗�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 |
→   𝐸 =‒

|�⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙 |

𝜀0

(7)
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�⃗� =‒
|�⃗�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 |

𝜀0
�̂�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙

(8)

  Here,  is the element of the surface,  is the total charge enclosed within Gauss’s surface, 𝑑𝑠 𝑞𝑒𝑛𝑐

and A is the Gauss’s surface area.  is smoothly changing in space outside and inside the BNNR �⃗�

and satisfies Maxwell’s rules [13–16] as written for the macroscopic electric field.

  Now, the voltage can be obtained from . The relation between  and voltage (V) can be written �⃗� �⃗�

as below based on electromagnetic theories.

�⃗� =‒ ∇⃗𝑉     (9)

𝑉 =‒ ∫�⃗� ∙ 𝑑𝑟    (10)

  Where  and  are gradient operator and the length element, respectively. The voltage can be ∇⃗ 𝑑𝑟

obtained by replacing the  from Eq. (8) in Eq. (10).�⃗�

𝑉 = ∫ ‒
|�⃗�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 |

𝜀0
�̂�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 ∙ 𝑑𝑟
   (11)

  Here,  is the length element of buckled (strained or rotated) BNNR. After any structure variation 𝑑𝑟

(such as buckling, strain, and rotation), the  gets a constant value and direction and can get �⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙

out from the integral. Therefore:

𝑉 = |�⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙 |∫|𝑑𝑟|

𝜀0
 (�̂�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 ∙ �̂�𝑟)
    (12)

  The above equation describes that the provided voltage by piezoelectric BNNRs is dependent on 
total polarizability ( ), length of BNNR ( ), the direction of the polarization vector (|�⃗�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 | |𝑑𝑟|

), and the direction of voltage harvesting ( ). For , and the length of BNNR �̂�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙 �̂�𝑟 �̂�𝐵𝑁𝑁𝑅

𝑇𝑜𝑡𝑎𝑙 ∙ �̂�𝑟 = 1

equal to L, the voltage can be rewritten as below:

𝑉 = |�⃗�𝐵𝑁𝑁𝑅
𝑇𝑜𝑡𝑎𝑙 |𝐿   (13)
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  The obtained value in Eq. (13) will change after each structure variation of piezoelectric; thereby, 
electrical consumers cannot use this produced voltage directly. In this respect, the electrical circuits 
containing the battery, capacitor, diode, resistance, et cetera, are required for increasing and storing 
voltage. Afterward, this stable voltage can be used by electrical consumers.
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