Interactions of limonene with the water dimer

S. Indira Murugachandran, M. Eugenia Sanz*

Department of Chemistry, King's College London, London SE1 1DB, UK

Supplementary Information

TABLE OF CONTENTS

Table S1. Calculated spectroscopic parameters for the isomers of limonene-(H2O)2 at B3LYP-D3BJ/6-311++G(d,p) andMP2/6-311++G(d,p) levels of theory within 4 kJ mol ⁻¹
Table S1 (cont.)
Table S1 (cont.)
Table S1 (cont.)
Table S2. Calculated spectroscopic parameters for the lower-energy isomers of limonene-(H2O)2 at M062X/6-311++G(d,p) level of theory
Table S3. Calculated spectroscopic parameters for the lower-energy isomers of limonene-(H2O)2 at wB97XD/6-311++G(d,p) level of theory
Table S4. Calculated spectroscopic parameters for the lower-energy isomers of limonene-(H2O)2 at B2PLYP-D3BJ/def2-TZVP level of theory
Table S5. Experimental spectroscopic parameters for the isotopic species of isomer 1 / EQA-3-II. 12
Table S6. Experimental spectroscopic parameters for the isotopic species of isomer 2 / EQA-4-II. 12
Table S7. Experimental spectroscopic parameters for the isotopic species of isomer 3 / EQC-4-I 12
Table S8. Experimental spectroscopic parameters for the isotopic species of isomer 4 / EQC-1-I
Table S9. Experimental spectroscopic parameters for the isotopic species of isomer 5 / EQC-2-I 12
Table S10. Experimental spectroscopic parameters for the isotopic species of isomer 6 / EQa-4-1
Table S11. Experimental spectroscopic parameters for the isotopic species of isomer 7 / EQA-2-I. 13
Table S12. Experimental coordinates of the water oxygen atoms for the observed limonene- $(H_2O)_2$ complexes comparedwith possible equilibrium structures from MP2 and B3LYP-D3BJ calculations using the 6-311++G(d,p) basis set.14
Table S12 (cont.). Experimental coordinates of the water oxygen atoms for the observed limonene- $(H_2O)_2$ complexescompared with possible equilibrium structures from MP2 and B3LYP-D3BJ calculations using the 6-311++G(d,p) basis set15
Table S13. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 1 / EQA-3-II of limonene-(H_2O) ₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory
Table S14. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 2 / EQA-4-II of limonene-(H_2O) ₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.17
Table S15. Intermolecular stabilising energy contributions (≥0.42 kJ mol ⁻¹) for isomer 3 / EQC-4-I of limonene-(H2O)2 fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.18
Table S16. Intermolecular stabilising energy contributions (≥0.42 kJ mol ⁻¹) for isomer 4 / EQC-1-I of limonene-(H2O)2 fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.19
Table S17. Intermolecular stabilising energy contributions (≥0.42 kJ mol ⁻¹) for isomer 5 / EQC-2-I of limonene-(H2O)2 fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.20
Table S18. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 6 / EQa-4-I of limonene-(H_2O) ₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.
Table S19. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 7 / EQA-2-I of limonene-(H_2O) ₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.
Figure S1. Plots of the reduced density gradient (RDG) versus sign($\lambda 2$) ρ for the observed isomers of limonene-(H ₂ O) ₂ 23
Table S20. Cartesian coordinates of isomer 1 / EQA-3-II from B3LYP-D3BJ/6-311++G(d,p) calculations
Table S21. Cartesian coordinates of isomer 2 / EQA-4-II from B3LYP-D3BJ/6-311++G(d,p) calculations27

Table S22. Cartesian coordinates of isomer 3 / EQC-4-I from B3LYP-D3BJ/6-311++G(d,p) calculations. 28
Table S23. Cartesian coordinates of isomer 4 / EQC-1-I from B3LYP-D3BJ/6-311++G(d,p) calculations. 29
Table S24. Cartesian coordinates of isomer 5 / EQC-2-I from B3LYP-D3BJ/6-311++G(d,p) calculations. 30
Table S25. Cartesian coordinates of isomer 6 / EQa-4-I from B3LYP-D3BJ/6-311++G(d,p) calculations. 31
Table S26. Cartesian coordinates of isomer 7 / EQA-2-I from B3LYP-D3BJ/6-311++G(d,p) calculations
Table S27. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 1 / EQA-3-II. 33
Table S28. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H218O)(H216O) isotopologue of isomer 1/ EQA-3-II. 34
Table S29. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H216O) (H218O) isotopologue of isomer 1 / EQA-3-II. 35
Table S30. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2 ¹⁸ O) (H2 ¹⁸ O) isotopologue of isomer 1 / EQA-3-II.
Table S31. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 2 / EQA-4-II.
Table S32. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2 ¹⁸ O)(H2 ¹⁶ O) isotopologue of isomer 2 / EQA-4-II.
Table S33. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2 ¹⁶ O) (H2 ¹⁸ O) isotopologue of isomer 2 / EQA-4-II. 40
Table S34. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2 ¹⁸ O) (H2 ¹⁸ O) isotopologue of isomer 2 / EQA-4-II.
Table S35. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 3 / EQC-4-I. .42
Table S36. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)(H_2^{16}O)$ isotopologue ofisomer 3 / EQC-4-I.43
Table S37. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ ($H_2^{18}O$) isotopologue ofisomer 3 / EQC-4-1.
Table S38. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)$ ($H_2^{18}O$) isotopologue ofisomer 3 / EQC-4-1.45
Table S39. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 4 / EQC-1-I. .46
Table S40. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2 ¹⁸ O)(H2 ¹⁶ O) isotopologue of isomer 4 / EQC-1-I. .47
Table S41. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2 ¹⁶ O)(H2 ¹⁸ O) isotopologue of isomer 4 / EQC-1-I.
Table S42. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 5 / EQC-2-I. 48
Table S43. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2 ¹⁸ O)(H2 ¹⁶ O) isotopologue of isomer 5 / EQC-2-I. 49
Table S44. Measured frequencies and residuals (in MHz) of the rotational transitions of the ($H_2^{16}O$) ($H_2^{18}O$) isotopologue ofisomer 5 / EQC-2-1.50

able S45. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H ₂ ¹⁸ O) (H ₂ ¹⁸ O) isotopologue of 5 / EQC-2-I.
able S46. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 6 / Qa-4-1.
able S47. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)$ ($H_2^{16}O$) isotopologue of 50 comer 6 / EQa-4-I.
able S48. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ ($H_2^{18}O$) isotopologue of somer 6 / EQa-4-I
able S49. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)$ ($H_2^{18}O$) isotopologue of somer 6 E/ Qa-4-I.
able S50. Measured frequencies and residuals (in MHz) of the rotational transitions of the aprent species of isomer 7 / QA-2-I
able S51. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)$ ($H_2^{16}O$) isotopologue of somer 7 / EQA-2-I.
able S52. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ $(H_2^{18}O)$ isotopologue of somer 7 / EQA-2-1.
able S53. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)$ ($H_2^{18}O$) isotopologue of somer 7 / EQA-2-1.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		EQA	-3-1	EQA	-3-11	EQA	-3-111	EQA	·3-IV	EQC	-1-I	EQC	-4-1
Aa (MHz)971.5970.2959.3966.61232.01197.0969.2956.31072.01058.6964.3962.B (MHz)597.8597.5607.0606.5472.3479.8597.5599.2579.3581.3605.5603.3C (MHz)447.3443.7441.1444.7430.0432.5446.2443.2477.2475.4445.6450.4 κ -0.43-0.42-0.36-0.36-0.89-0.88-0.42-0.39-0.66-0.64-0.38-0.4 μ_b (D)0.40.20.3-0.2-0.1-0.60.72.52.2-0.1-0. μ_c (D)0.70.9-0.50.0-1.6-1.8-0.50.70.20.1-0.5-0. ΔE (cm ⁻¹)88.729.845.10.0103.867.2164.4132.80.0184.1140.4106. ΔE_{2pc} (cm ⁻¹)0.053.827.20.041.382.759.5111.570.2304.980.5149. $\Delta E(BSSE)(kJ mol-1)$ -55.6-38.5-55.8-39.1-55.3-39.5-54.8-37.9-54.7-38.1-55.0-39.5Side view		B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
B (MHz)597.8597.5607.0606.5472.3479.8597.5599.2579.3581.3605.5603.3C (MHz)447.3443.7441.1444.7430.0432.5446.2443.2477.2475.4445.6450.4 κ -0.43-0.42-0.36-0.36-0.89-0.88-0.42-0.39-0.66-0.64-0.38-0.44 μ_a (D)2.7-2.72.9-3.00.00.12.7-2.7-2.62.9-3.0-2.1 μ_b (D)0.40.20.3-0.2-0.2-0.1-0.60.72.52.2-0.1-0.4 μ_c (D)0.70.9-0.50.0-1.6-1.8-0.50.70.20.1-0.5-0.4 μ_c (D)0.70.9-0.50.013.867.2164.4132.80.0184.1140.4106.5 $\Delta E(cm^{-1})$ 88.729.845.10.0103.867.2164.4132.80.0184.1140.4106.5 ΔE_{ZPC} (cm ⁻¹)0.053.827.20.041.382.759.5111.570.2304.980.5149.5 ΔE_{ZPC} (cm ⁻¹)0.053.827.20.041.382.759.5111.570.2304.980.5149.5 ΔE_{ZPC} (cm ⁻¹)-55.6-38.5-55.8-39.1-55.3-39.5-54.8-37.9-54.7-3	Aª (MHz)	971.5	970.2	959.3	966.6	1232.0	1197.0	969.2	956.3	1072.0	1058.6	964.3	962.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B (MHz)	597.8	597.5	607.0	606.5	472.3	479.8	597.5	599.2	579.3	581.3	605.5	603.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C (MHz)	447.3	443.7	441.1	444.7	430.0	432.5	446.2	443.2	477.2	475.4	445.6	450.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	κ	-0.43	-0.42	-0.36	-0.36	-0.89	-0.88	-0.42	-0.39	-0.66	-0.64	-0.38	-0.40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μ _a (D)	2.7	-2.7	2.9	-3.0	0.0	0.1	2.7	-2.7	-2.6	2.9	-3.0	-2.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μ _b (D)	0.4	0.2	0.3	-0.2	-0.2	-0.1	-0.6	0.7	2.5	2.2	-0.1	-0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	μ _c (D)	0.7	0.9	-0.5	0.0	-1.6	-1.8	-0.5	0.7	0.2	0.1	-0.5	-0.6
$\frac{\Delta E_{ZPC} (cm^{-1})}{\Delta E(BSSE)(kJ mol^{-1})} = \frac{0.0}{-55.6} + \frac{53.8}{-38.5} + \frac{27.2}{-55.8} + \frac{0.0}{-39.1} + \frac{41.3}{-55.3} + \frac{82.7}{-39.5} + \frac{59.5}{-54.8} + \frac{111.5}{-37.9} + \frac{70.2}{-54.7} + \frac{304.9}{-38.1} + \frac{80.5}{-55.0} + \frac{149.5}{-39.1} + \frac{149.5}{-55.0} + \frac{149.5}{-39.1} + \frac{149.5}{-55.0} + \frac{149.5}$	ΔE (cm ⁻¹)	88.7	29.8	45.1	0.0	103.8	67.2	164.4	132.8	0.0	184.1	140.4	106.3
ΔE(BSSE)(kl mol ⁻¹) -55.6 -38.5 -55.8 -39.1 -55.3 -39.5 -54.8 -37.9 -54.7 -38.1 -55.0 -39.1 Side view	ΔE _{ZPC} (cm ⁻¹)	0.0	53.8	27.2	0.0	41.3	82.7	59.5	111.5	70.2	304.9	80.5	149.7
Side view	ΔE(BSSE)(kJ mol ⁻¹)	-55.6	-38.5	-55.8	-39.1	-55.3	-39.5	-54.8	-37.9	-54.7	-38.1	-55.0	-39.2
	Side view	}	*		4 6-5-	49 }-}	\$	` ؟ الحسول	▲ ₩	م الحسولي		ال ال	•

Table S1. Calculated spectroscopic parameters for the isomers of limonene- $(H_2O)_2$ at B3LYP-D3BJ/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory within 4 kJ mol⁻¹.

Top view

^a A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moments along the principal inertial axes; ΔE are the relative energies; ΔE_{zPc} are the relative energies including zero-point corrections; ΔE (BSSE) are the interaction energies including BSSE and fragment relaxation; κ is the calculated Ray's asymmetry parameter

	EQA	-3-V	EQA-4-I		EQA-4-II		EQC-2-I		EQA-4-III		EQA-4-IV	
	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
Aª (MHz)	1239.4	1148.6	1001.5	980.5	1012.1	1001.5	1075.2	1081.3	946.0	939.2	1172.6	
B (MHz)	467.4	484.1	557.6	577.1	570.3	577.9	541.4	538.8	609.1	611.5	479.8	
C (MHz)	428.0	433.5	468.4	476.6	471.7	472.0	431.8	436.6	444.0	444.4	435.5	Conve
К	-0.90	-0.86	-0.67	-0.60	-0.64	-0.60	-0.66	-0.68	-0.34	-0.32	-0.88	raed
μ _a (D)	-0.7	-0.2	0.5	-1.0	-0.8	-0.9	1.7	-1.8	2.6	2.6	1.0	to
μ _b (D)	-0.4	0.2	1.4	0.9	-0.8	0.5	-0.4	0.0	1.3	1.1	-0.2	504
μ _c (D)	1.2	-1.8	-1.4	-1.6	-1.3	-1.5	0.6	-0.9	-0.4	0.5	-1.0	EQA-
ΔE (cm⁻¹)	187.5	182.5	195.8	104.5	172.7	68.0	188.5	202.9	159.8	7.6	234.4	4-II
ΔE _{ZPC} (cm ⁻¹)	86.9	141.1	87.6	75.7	88.7	62.1	89.3	161.1	92.2	72.9	101.2	
∆E(BSSE)(kJ mol ⁻¹)	-54.7	-38.3	-55.0	-37.9	-55.0	-38.1	-54.5	-39.5	-55.0	-38.5	-54.1	
						0		(A)				

^a A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moments along the principal inertial axes; ΔE are the relative energies; ΔE_{zpc} are the relative energies including zero-point corrections; ΔE (BSSE) are the interaction energies including BSSE and fragment relaxation; κ is the calculated Ray's asymmetry parameter

Table S1 (cont.).

	EQA	-4-V	EQC	:-3-I	EQA	-4-VI	EQa	-4-1	EQA	-2-I	EQC	-2-11
	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
Aª (MHz)	1165.5		1072.6	1049.7	1163.5		1010.0	1000.1	1010.3	990.5	1132.9	1102.9
B (MHz)	483.5		581.0	581.2	481.5		578.0	589.5	565.9	566.5	485.6	507.3
C (MHz)	437.5	Conve	479.3	475.0	436.8	Conve	482.8	479.0	422.5	418.6	439.3	444.0
К	-0.87	rged	-0.66	-0.63	-0.88	rged	-0.64	-0.58	-0.51	-0.48	-0.87	-0.81
μ _a (D)	-0.2	to	3.0	-3.1	-0.9	to	1.4	1.4	-1.7	-2.0	-1.0	1.5
μ _b (D)	0.4	EOA	-2.5	-2.4	0.3	EOA	0.2	0.1	1.0	1.2	0.1	-0.1
μ _c (D)	-1.5	EQA-	-0.2	-0.1	-1.0	EQA-	-1.0	-1.4	1.1	-0.8	-1.1	1.1
∆E (cm ⁻¹)	196.0	4-1	44.0	212.4	234.9	4-11	210.0	157.0	279.6	286.5	207.1	255.6
∆E _{ZPC} (cm ⁻¹)	118.7		119.6	345.9	120.7		123.3	156.7	129.5	267.1	133.0	235.7
∆E(BSSE)(kJ mol ⁻¹)	-54.5		-56.4	-37.5	-54.1		-54.1	-39.6	-53.6	-37.6	-54.1	-38.8
Side view	ی ک و اوع	\$Ç	ې کې کې	Ş.	€-{ } }^	\$\$	کی کی افرا	\$ \$) 		}- &	₩¢
Top view	Ŋ	Ş.	×	ŻŻ	Ż		*		~	Ş	×	Ş

^a A, B and C are the rotational constants; μ_{a} , μ_{b} and μ_{c} are the electric dipole moments along the principal inertial axes; ΔE are the relative energies; ΔE_{zpc} are the relative energies including zero-point corrections; ΔE (BSSE) are the interaction energies including BSSE and fragment relaxation; κ is the calculated Ray's asymmetry parameter

	EQC	-2-111	EQA	-1-l	EQC	4-11	EQA-	4-VII	AXa	-1-I	EQA	-1-11
	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
Aª (MHz)	1077.6	1064.0	1011.6	1006.4	990.8	982.3	926.1	913.9	1333.5	1322.0	1154.7	1135.1
B (MHz)	540.5	546.2	602.6	604.4	553.1	567.8	615.3	617.7	473.9	472.9	467.3	465.9
C (MHz)	432.2	435.0	458.1	461.5	488.1	494.2	434.5	434.6	454.8	461.5	399.5	397.6
κ	-0.66	-0.65	-0.48	-0.48	-0.91	-0.70	-0.26	-0.24	-0.96	-0.97	-0.82	-0.81
μ _a (D)	2.1	-2.4	-2.0	2.3	1.1	1.8	-2.7	-2.9	-0.1	0.3	0.0	0.0
μ _b (D)	-0.3	0.3	-2.4	2.2	-0.3	-0.2	-1.4	1.1	0.6	0.7	-0.9	0.9
μ _c (D)	-0.1	0.1	1.0	-1.0	1.9	1.7	-0.4	-0.4	-1.1	-1.4	-1.5	1.5
ΔE (cm ⁻¹)	261.5	235.7	135.7	103.3	260.6	206.4	277.5	164.2	238.5	47.5	255.8	324.6
ΔE _{ZPC} (cm ⁻¹)	138.0	226.5	139.1	214.9	163.3	158.9	164.2	186.1	168.8	119.0	174.0	355.1
∆E(BSSE)(kJ mol ⁻¹)	-53.7	-38.9	-55.0	-37.3	-53.7	-38.2	-53.6	-37.4	-54.1	-39.4	-53.9	-37.5
Side view	}		کی کر ک		ار ور	\$	کی کی اف	الب مو	- 			
Top view	×	ţ,	*		7	\$¢	≁	* *	×			

^a A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moments along the principal inertial axes; ΔE are the relative energies; ΔE_{zPC} are the relative energies including zero-point corrections; ΔE (BSSE) are the interaction energies including BSSE and fragment relaxation; κ is the calculated Ray's asymmetry parameter.

Table S1 (cont.).

	EQA-	1-111	EQa-	4-11	EQC-4	4-111	EQA	-2-11	EQC	-3-11	EQC	-4-IV
-	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
Aª (MHz)	985.6	987.2	1011.8	996.7	916.5	910.2	1021.9	1020.8	1273.9	1242.4	1157.1	
B (MHz)	615.2	610.5	576.8	590.0	639.7	641.9	568.3	567.5	455.4	461.5	477.5	
C (MHz)	457.1	458.6	479.2	482.8	432.2	434.9	429.6	431.8	416.4	417.7	443.7	Conve
κ	-0.40	-0.43	-0.63	-0.58	-0.14	-0.13	-0.53	-0.54	-0.91	-0.89	-0.91	rgod
μ _a (D)	-3.0	-3.0	2.1	2.4	-2.4	-2.4	-2.5	-2.7	0.4	-0.3	0.2	igeu
μ _b (D)	-2.5	2.5	-0.1	-0.2	-0.5	0.2	0.0	-0.1	0.9	0.8	0.8	to
μ _c (D)	0.4	0.4	0.8	1.0	1.1	1.2	-0.5	-0.4	-1.5	-1.7	-1.6	EQC-
ΔE (cm ⁻¹)	159.6	144.0	288.0	209.1	281.2	291.5	306.2	263.9	253.4	286.6	288.3	4-II
ΔE_{ZPC} (cm ⁻¹)	177.1	227.6	181.5	184.6	182.4	268.9	197.5	294.5	197.7	283.8	215.7	
∆E(BSSE)(kJ mol ⁻¹)	-55.0	-36.9	-53.4	-39.1	-53.5	-38.3	-53.3	-37.4	-54.0	-39.0	-53.3	
Side view	<u>ن</u> یکی کو پ		∳&√ ₽&				\$- \$		449 3-3-4	K,	الي ال ي قو ع	*
Top view	Ż		Ż	÷			Y			+	Ŋ	¥

^a A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moments along the principal inertial axes; ΔE are the relative energies; ΔE_{zPC} are the relative energies including zero-point corrections; ΔE (BSSE) are the interaction energies including BSSE and fragment relaxation; κ is the calculated Ray's asymmetry parameter.

	EQA-2	2-111	AXa	-1-11	AXa	-4-1	AXa	-4-11	EQa	-3-I	EQA	-2-IV
	B3LYP	MP2	B3LYP	MP2	B3LYP	B3LYP	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
Aª (MHz)	1168.2	1141.3	1349.9	1323.4	1308.9	1264.1	1009.4	1004.6	960.4	949.3	1161.4	1135.1
B (MHz)	459.0	463.7	467.1	463.1	481.9	497.1	609.3	613.6	603.5	606.1	457.3	462.1
C (MHz)	391.8	392.1	451.7	460.9	465.9	476.0	466.2	473.5	435.1	434.6	393.2	394.0
К	-0.83	-0.81	-0.97	-0.99	-0.96	-0.95	-0.47	-0.47	-0.36	-0.33	-0.83	-0.82
μ _a (D)	0.2	-0.1	0.3	0.0	0.1	-0.2	1.2	1.3	2.2	-2.4	0.5	0.3
μ _ь (D)	-0.4	0.4	-1.0	0.5	0.6	-0.9	1.4	-1.6	-1.7	-1.3	-0.4	-0.3
μ _c (D)	1.4	-1.4	0.6	-1.6	1.4	-1.4	-0.3	-0.2	0.7	-0.7	1.8	-2.0
∆E (cm ⁻¹)	339.7	429.5	277.7	105.5	258.5	21.0	246.8	80.2	332.2	263.0	319.3	410.4
ΔE_{ZPC} (cm ⁻¹)	223.2	419.4	232.9	148.8	245.6	104.0	246.9	114.6	248.9	309.7	255.2	443.3
∆E(BSSE)(kJ mol ⁻¹)	-53.0	-37.2	-53.6	-39.0	-53.8	-39.4	-53.0	-38.6	-53.2	-37.9	-53.2	-36.8
Side view	}				الله الله الله الله		الح افي فر		••• }-∂={		}	÷,
Top view	×		Ż		×Z		-	e de			Ż	* **

^a A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moments along the principal inertial axes; ΔE are the relative energies; ΔE_{zPC} are the relative energies including zero-point corrections; ΔE (BSSE) are the interaction energies including BSSE and fragment relaxation; κ is the calculated Ray's asymmetry parameter.

Table S1 (cont.).

	AXa-	4-111	AXa-	4-IV	EQC-1-II		
	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	
Aª (MHz)	1308.3	1255.0	1012.4	1012.0	1141.2	1123.2	
B (MHz)	480.9	498.7	606.7	606.5	469.6	468.4	
C (MHz)	464.2	469.7	465.2	470.2	399.8	397.8	
К	-0.96	-0.93	-0.48	-0.50	-0.81	-0.81	
μ _a (D)	-0.5	0.3	-0.9	0.9	0.7	-0.8	
μ _b (D)	0.2	-1.0	1.5	-1.6	-1.2	1.3	
μ _c (D)	1.6	-1.5	0.9	-1.0	1.4	-1.6	
ΔE (cm ⁻¹)	335.7	130.4	368.9	141.3	309.9	525.5	
ΔE _{ZPC} (cm ⁻¹)	256.1	151.7	257.7	155.4	310.8	585.8	
∆E(BSSE)(kJ mol ⁻¹)	-53.0	-38.6	-52.6	-38.1	-52.1	-34.8	
Side view	5		3		}	5	
Top view							

^a A, B and C are the rotational constants; μ_a , μ_b and μ_c are the electric dipole moments along the principal inertial axes; ΔE are the relative energies; ΔE_{ZPC} are the relative energies including zero-point corrections; ΔE (BSSE) are the interaction energies including BSSE and fragment relaxation; κ is the calculated Ray's asymmetry parameter.

Name	Aª (MHz)	B (MHz)	C (MHz)	μ _a (D)	μ _b (D)	μ _c (D)	ΔE (cm ⁻¹)	ΔE _{ZPC} (cm ⁻¹)
EQC-1-I	1105.9	582.3	486.7	-2.8	2.2	0.2	0.0	0.0
EQC-3-I	1105.1	582.0	488.3	2.9	-2.3	-0.1	35.5	30.5
EQA-3-IV	1002.1	607.3	454.8	-2.3	-0.5	-0.9	292.4	182.2
EQA-1-I	1047.0	605.9	469.9	-2.2	-2.2	1.0	192.8	189.4
EQA-3-II	1012.6	605.3	451.2	2.8	0.1	-0.4	320.2	201.9
EQa-4-I	1047.4	605.2	488.6	2.2	-0.2	-1.1	157.3	205.0
EQA-3-III	1256.5	489.0	438.8	-0.1	-0.7	-1.5	348.6	235.5
EQC-2-I	1101.2	549.6	435.6	1.9	-0.2	0.5	348.9	240.8
EQA-1-III	1040.4	609.7	470.4	-3.1	-2.2	0.4	229.4	246.3
EQA-3-V	1259.6	479.8	434.4	-0.7	-0.5	1.1	445.1	255.7
EQA-4-V	1217.4	481.3	437.3	-0.3	-0.1	-1.3	474.2	297.4
EQa-3-I	1063.1	591.7	475.3	-2.7	2.7	-0.1	317.7	302.2
EQa-4-II	1043.6	614.0	488.6	-2.2	0.3	-1.3	366.5	305.9
EQA-4-II	1025.2	596.3	481.8	1.4	0.5	-1.3	472.0	309.7
EQC-4-I	977.6	611.7	448.7	3.1	0.1	-0.1	333.9	316.7
EQA-2-I	1091.0	557.4	432.3	-1.7	0.7	1.1	465.5	330.7
EQC-2-III	1100.2	551.3	439.9	2.3	-0.2	-0.2	420.3	336.5
EQC-4-III	969.6	638.7	448.4	-2.4	0.0	1.1	422.0	340.0
EQA-4-I	1020.2	612.4	497.0	-1.5	-2.3	-1.6	339.2	344.1
EQC-3-II	1307.9	459.5	419.5	0.4	0.6	-1.6	386.0	354.5
EQC-4-II	998.4	574.5	509.0	1.1	-0.8	2.1	406.1	367.2
EQA-3-I	989.5	604.3	448.1	2.9	0.1	0.5	418.5	369.4
EQA-2-II	1101.9	561.2	440.8	-2.7	0.4	-0.3	502.9	399.2
EQA-4-VI	1203.5	485.0	440.1	-0.9	0.0	-0.8	524.8	399.4
EQA-4-IV	1203.4	485.1	440.1	1.0	0.0	-0.8	524.7	402.3
AXa-4-IV	952.5	659.9	487.5	1.2	1.5	0.9	484.1	407.8
AXa-4-II	951.6	661.7	489.2	-1.5	1.5	-0.7	435.9	408.9
EQC-4-IV	1194.9	475.8	447.5	-0.1	1.1	1.4	477.7	415.0
EQC-2-II	1094.6	494.8	463.8	-0.5	0.4	-1.6	430.5	425.3
AXa-4-I	1297.7	497.5	484.0	-0.2	0.5	1.4	375.7	448.2
EQA-4-VII	989.1	626.8	448.0	-2.4	1.0	-0.4	535.8	452.8
EQA-4-III	947.0	619.7	447.3	2.8	1.1	-0.2	466.8	457.2
AXa-1-I	1383.7	475.5	456.1	-0.2	1.2	0.7	440.7	462.2
AXa-1-II	1380.3	476.2	457.7	0.3	1.1	0.3	453.7	466.6
EQC-1-II	1125.9	492.2	406.3	0.3	-1.2	1.4	526.0	481.3
AXa-4-III	1294.7	498.0	481.7	0.4	0.2	1.6	465.7	489.4
EQA-2-III	1137.8	483.1	402.3	-0.2	-0.5	1.6	622.8	492.1
EQA-1-II	1134.2	486.8	413.5	-0.2	-0.9	-1.5	476.2	509.0
EQA-2-IV	1132.7	480.8	403.0	0.3	-0.5	1.9	628.0	546.1

Table S2. Calculated spectroscopic parameters for the lower-energy isomers of limonene- $(H_2O)_2$ at M062X/6-311++G(d,p) level of theory.

Name	Aª (MHz)	B (MHz)	C (MHz)	μ _a (D)	μ _b (D)	μ _c (D)	ΔE (cm ⁻¹)	ΔE _{ZPC} (cm ⁻¹)
EQC-1-I	1082.2	581.4	480.7	-2.5	2.5	0.1	0.0	0.0
EQA-3-II	968.5	610.2	445.2	2.8	0.4	-0.6	176.9	12.5
EQC-3-I	1083.1	582.6	482.7	2.9	-2.5	-0.3	35.4	34.0
EQA-3-V	1248.3	475.7	431.6	-0.8	-0.3	1.1	303.9	75.9
EQA-1-I	1020.5	604.2	461.7	-1.9	-2.4	1.0	159.4	81.9
EQA-3-III	1243.0	476.6	432.1	0.1	-0.3	-1.5	241.9	84.7
EQa-4-I	1012.5	592.1	489.9	1.6	0.2	-1.0	293.0	101.8
EQA-4-IV/VI	1180.8	487.1	440.1	1.0	-0.2	-0.8	370.0	119.8
EQA-3-I	973.1	603.4	449.0	2.8	0.5	0.6	218.2	124.7
EQA-4-I	990.0	587.6	482.9	0.7	-1.9	1.5	292.0	132.1
EQC-4-II	993.3	560.7	496.1	1.0	-0.5	2.0	372.4	143.3
EQA-4-V	1188.6	483.4	437.5	-0.3	0.2	-1.4	351.0	147.7
EQC-2-I	1067.9	550.5	434.8	1.8	-0.5	0.6	330.8	153.2
EQC-4-I	964.2	610.6	444.9	3.1	-0.2	0.2	243.1	155.8
EQA-3-IV	973.5	602.9	448.0	-2.7	0.7	-0.6	290.1	160.2
EQC-2-II	1125.9	492.5	444.3	-0.8	0.1	-1.2	354.3	168.1
AXa-1-II	1324.8	477.4	459.9	0.4	0.8	0.9	476.3	170.3
EQA-4-II	1008.1	579.7	480.1	-0.6	-0.8	-1.2	335.8	178.0
EQA-1-III	1007.9	613.5	463.2	-3.0	-2.4	0.3	171.3	181.7
EQA-4-III	939.8	616.7	444.3	2.7	1.4	-0.3	292.7	185.0
EQA-4-VII	924.4	622.9	435.6	-2.9	-1.5	-0.4	407.3	198.8
AXa-1-I	1322.2	478.6	459.3	0.1	0.5	1.1	434.9	201.5
EQC-2-III	1070.2	549.3	434.6	2.1	-0.4	0.0	405.7	203.0
EQC-4-IV	1169.7	478.0	446.2	-0.1	0.9	1.6	413.5	228.7
EQC-4-III	931.2	642.0	438.1	-2.3	-0.8	1.1	348.9	276.3
EQA-2-I	1027.8	568.7	429.6	-1.7	1.0	1.1	406.0	281.8
EQC-3-II	1284.0	457.5	418.1	0.6	0.9	-1.5	351.1	289.7
EQA-2-IV	1147.4	470.5	399.4	0.4	-0.6	1.7	450.5	290.8
EQa-4-II	1015.7	587.1	485.9	2.4	0.0	0.7	407.5	292.6
AXa-4-II	996.0	619.3	472.0	-1.0	1.6	-0.7	470.4	301.3
AXa-4-III	1302.3	489.1	473.3	0.6	0.2	1.5	475.0	306.6
AXa-4-I	1300.2	490.1	473.4	0.0	-0.6	1.4	403.4	322.8
EQA-1-II	1144.5	477.8	407.3	0.0	-1.0	-1.4	394.9	329.9
EQA-2-III	1154.6	470.2	397.4	0.1	-0.5	1.5	463.1	358.4
EQA-2-II	1037.8	569.2	434.4	2.5	0.1	0.6	472.2	361.9
EQC-1-II	1127.5	482.3	406.8	0.8	-1.4	1.4	511.9	363.7
AXa-4-IV	995.4	621.1	472.9	0.8	1.6	0.9	487.6	363.9
EQa-3-I	1034.8	593.1	466.4	2.6	-2.9	-0.2	369.7	385.6

Table S3. Calculated spectroscopic parameters for the lower-energy isomers of limonene- $(H_2O)_2$ at wB97XD/6-311++G(d,p) level of theory.

Name	Aª (MHz)	B (MHz)	C (MHz)	μ _a (D)	μ _b (D)	μ _c (D)	ΔE (cm ⁻¹)	ΔE _{ZPC} (cm ⁻¹)
EQA-3-II	974.4	608.3	445.5	2.6	0.6	-0.7	108.1	0.0
EQC-1-I	1082.5	582.3	481.0	-2.5	2.3	0.1	0.0	13.4
EQA-3-III	1233.3	481.3	434.7	0.2	-0.3	-1.5	178.8	29.8
EQA-4-I	990.7	581.1	479.6	0.7	-1.6	1.5	229.9	41.7
EQA-3-I	970.1	603.1	447.2	2.8	0.8	0.4	194.0	45.7
EQC-3-I	1081.1	584.7	482.6	2.7	-2.4	-0.3	20.1	46.5
EQA-1-I	1024.5	606.1	462.8	-2.0	-2.2	0.8	106.3	63.4
EQA-3-IV	980.5	598.4	446.3	-2.5	0.9	-0.7	275.3	72.0
EQA-3-V	1229.6	477.9	433.6	-0.7	-0.1	1.2	242.8	72.4
EQA-4-II	1008.7	582.1	478.4	-0.8	-0.7	-1.2	253.5	78.6
EQA-1-III	1007.4	616.3	463.9	-2.8	-2.3	0.2	98.3	80.1
EQC-2-I	1097.9	539.2	437.2	-1.5	-0.2	-0.8	262.8	84.1
EQa-4-I	1016.9	590.5	488.1	1.6	0.2	-0.9	255.9	88.0
EQA-4-IV/6	1155.3	493.5	443.7	-0.8	0.4	-1.0	298.8	93.5
EQC-4-I	968.0	608.1	447.9	3.0	-0.5	0.2	237.2	101.2
EQA-4-V	1207.0	479.4	431.7	-0.9	0.2	-1.2	272.5	108.4
EQA-4-III	944.5	615.2	444.0	2.7	1.5	-0.2	268.7	112.6
EQC-4-III	932.0	642.4	440.3	-2.1	-0.9	1.0	281.3	134.3
EQa-4-II	1004.6	595.4	482.8	1.4	-0.8	1.1	345.2	140.9
EQA-2-I	1034.8	566.8	430.9	-1.5	0.8	1.2	333.7	150.6
EQC-4-II	986.1	563.7	495.2	0.9	-0.7	2.0	305.7	151.9
EQA-4-VII	935.2	618.1	435.8	-2.6	-1.7	-0.5	384.3	164.2
EQC-3-II	1284.4	460.5	419.3	0.7	0.6	-1.4	339.9	172.9
EQC-2-II	1098.9	491.6	451.5	-0.3	-0.1	-1.6	313.5	176.9
EQa-3-I	1013.5	599.9	458.2	2.2	-2.6	0.1	281.5	195.8
EQC-4-IV	1183.7	475.7	440.8	-0.7	0.7	1.4	359.2	200.6
EQA-1-II	1140.0	477.2	404.8	0.2	-1.1	-1.5	332.4	205.4
EQA-2-II	1031.0	565.1	434.0	2.1	0.3	-0.2	395.8	212.2
AXa-1-II	1341.8	472.4	457.0	0.4	0.7	0.9	357.0	212.9
AXa-1-I	1342.2	476.4	456.3	0.2	0.8	1.0	358.0	213.1
AXa-4-I	1302.7	488.7	474.7	-0.2	-0.3	1.5	325.4	215.3
AXa-4-II	1006.4	614.1	472.0	-0.6	1.8	-0.8	365.2	241.2
AXa-4-III	1295.6	489.7	472.8	0.6	0.5	1.3	379.2	256.6
EQA-2-IV	1142.4	470.8	399.1	0.5	-0.6	1.7	419.7	258.1
EQA-2-III	1152.6	469.3	397.0	0.1	-0.5	1.4	437.3	267.3
AXa-4-IV	1000.0	621.2	473.6	0.7	1.5	0.7	421.7	268.2
EQC-1-II	1126.0	482.0	403.7	0.8	-1.5	1.3	482.8	347.0
EQC-2-III			Not converged	at B2PLYP-D3B	J/def2-TZVP lev	el of theory		

Table S4. Calculated spectroscopic parameters for the lower-energy isomers of limonene- $(H_2O)_2$ at B2PLYP-D3BJ/def2-TZVP level of theory.

Table S5. Experimental spectroscopic parameters for the isotopic species of isomer 1 / EQA-3-II.

Parameter	(H ₂ ¹⁸ O)(H ₂ ¹⁶ O)	(H ₂ ¹⁶ O)(H ₂ ¹⁸ O)	(H ₂ ¹⁸ O)(H ₂ ¹⁸ O)
Aª (MHz)	933.1763(38)	910.2621(12)	897.8046(24)
B (MHz)	589.54146(69)	597.86601(24)	589.52432(57)
C (MHz)	424.99072(45)	424.33470(17)	417.53181(45)
Δ _J b (kHz)	0.1173(39)	0.0970(14)	0.1095(29)
Δ _{JK} (kHz)	0.234(42)	0.399(15)	0.248(22)
δ, (kHz)	0.0440(27)	0.0374(11)	0.0386(25)
σ^{d}	5.7	1.9	2.5
N ^e	38	35	36

Table S6. Experimental spectroscopic parameters for the isotopic species of isomer 2 / EQA-4-II.

Parameter	(H ₂ ¹⁸ O)(H ₂ ¹⁶ O)	(H ₂ ¹⁶ O)(H ₂ ¹⁸ O)	(H ₂ ¹⁸ O)(H ₂ ¹⁸ O)
Aª (MHz)	951.0674(13)	934.06420(85)	919.5171(13)
B (MHz)	570.17231(57)	576.56319(40)	567.95688(92)
C (MHz)	454.84926(39)	453.86332(32)	447.66688(62)
∆」 ^b (kHz)	0.1705(78)	0.1828(46)	0.188(10)
Δ _{JK} (kHz)	0.781(81)	0.985(53)	0.686(65)
δ, (kHz)	0.0405(38)	0.0579(25)	0.0522(54)
δ _κ (kHz)	0.789(72)	0.840(43)	0.900(97)
σ^{d}	4.6	4.4	5.7
Ne	33	41	35

Table S7. Experimental spectroscopic parameters for the isotopic species of isomer 3 / EQC-4-I.

Parameter	(H ₂ ¹⁸ O)(H ₂ ¹⁶ O)	(H ₂ ¹⁶ O)(H ₂ ¹⁸ O)	(H ₂ ¹⁸ O)(H ₂ ¹⁸ O)
A ^a (MHz)	903.4523(27)	888.6196(24)	871.1300(20)
C (MHz)	429.94788(22)	428.69218(21)	422.27315(26)
Δ _J ^b (kHz)	0.0554(30)	0.0565(36)	0.0580(26)
Δ _{JK} (kHz)	0.831(18)	0.8947(18)	0.823(20)
δ, (kHz)	[-0.006]	[-0.006]	[-0.006]
δ _κ (kHz)	0.418(30)	0.485(32)	0.429(38)
σ^{d}	3.6	3.2	4.2
N ^e	40	31	37

Table S8. Experimental spectroscopic parameters for the isotopic species of isomer 4 / EQC-1-I.

Parameter	(H ₂ ¹⁸ O)(H ₂ ¹⁶ O)	(H ₂ ¹⁶ O)(H ₂ ¹⁸ O)
Aª (MHz) B (MHz)	990.092(17) 577.2998(22)	991.486(18) 576.5887(17)
C (MHz)	455.69130(51)	455.68055(76)
Δյ ^ь (kHz)	[0.0116]	[0.0116]
Δ _{JK} (kHz)	[1.048]	[1.048]
σ^{d}	9.1	5.3
N ^e	10	8

Table S9. Experimental spectroscopic parameters for the isotopic species of isomer	• 5 / EQC-2-I.
--	----------------

Parameter	(H ₂ ¹⁸ O)(H ₂ ¹⁶ O)	(H ₂ ¹⁶ O)(H ₂ ¹⁸ O)	(H ₂ ¹⁸ O)(H ₂ ¹⁸ O)
Aª (MHz) B (MHz)	1035.2487(76) 524.50158(60)	1010.6869(73) 533.94459(73)	1001.4047(94) 522.5763(11)
C (MHz)	414.96815(56)	417.87349(54)	409.48791(93)
∆ ^ا (kHz)	0.1099(23)	0.1053(39)	0.1165(52)
δ, (kHz)	0.0309(26)	0.0305(36)	0.0350(57)
σ^{d}	5.4	4.7	7.0
Ne	35	30	25

Table S10. Experimental spectroscopic parameters for the isotopic species of isomer 6 / EQa-4-I.

Parameter	(H ₂ ¹⁸ O)(H ₂ ¹⁶ O)	(H ₂ ¹⁶ O)(H ₂ ¹⁸ O)	(H ₂ ¹⁸ O)(H ₂ ¹⁸ O)
Aª (MHz)	952.445(12)	937.1582(92)	920.031(15)
B (MHz)	577.61355(77)	585.33491(89)	577.3785(12)
C (MHz)	466.44558(69)	464.10488(58)	458.64240(83)
Δ ^{jb} (kHz)	0.084(10)	0.0782(80)	0.060(16)
Δ _{JK} (kHz)	[0.531]	[0.531]	[0.531]
δ _κ (kHz)	[0.542]	[0.542]	[0.542]
σ^{d}	6.9	7.0	6.6
N ^e	15	14	11

Table S11. Experimental spectroscopic parameters for the isotopic species of isomer 7 / EQA-2-I.

Parameter	(H ₂ ¹⁸ O)(H ₂ ¹⁶ O)	(H ₂ ¹⁶ O)(H ₂ ¹⁸ O)	(H ₂ ¹⁸ O)(H ₂ ¹⁸ O)
Aª (MHz)	983.9449(75)	960.2550(48)	951.2087(59)
B (MHz)	544.6077(11)	555.14250(83)	543.03954(47)
C (MHz)	407.53152(71)	409.51888(65)	401.58818(53)
∆」 ^b (kHz)	0.1074(52)	0.1154(37)	0.1108(62)
Δ _κ (kHz)	[1.40]	[1.40]	[1.40]
δ, (kHz)	0.0252(45)	0.0253(39)	0.0247(53)
δ _κ (kHz)	[0.147]	[0.147]	[0.147]
σ^{d}	6.0	5.5	6.9
Ne	27	28	24

Table S12. Experimental coordinates of the water oxygen atoms for the observed limonene- $(H_2O)_2$ complexes compared with possible equilibrium structures from MP2 and B3LYP-D3BJ calculations using the 6-311++G(d,p) basis set.

<u> </u>	lsomer 1	EQA	A-3-II	EQA	\-3-I	E	QA-3-IV	EQC-4	-1	EQ1-4	W3
	rs	B3LYP ^c	MP2 ^d	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
		01		0	1		01	01		01	
 <i>a</i> ^a	2.41601(64)	2.155	2.165	2.273	2.373	2.260	2.3023	1.810	1.779	1.949	1.904
b	2.02680(76)	2.113	2.100	2.046	1.994	2.049	2.0379	2.408	2.404	2.342	2.351
c	0.2471(63)	0.421	0.433	0.494	0.394	0.584	0.5464	0.045	0.070	0.245	0.325
		02		0	2		02	02		02	
<i>a</i>	0.00(14)	0.327	0.328	0.094	0.058	0.036	0.0272	0.863	0.881	0.641	0.670
<i>b</i>	3.29759(46)	3.262	3.260	3.157	3.195	3.154	3.2109	3.036	3.037	3.285	3.316
0	0.1559(97)	0.262	0.310	0.549	0.461	0.619	0.5904	0.707	0.733	0.406	0.457
	Isomer 2	EQA	<u>-4-II</u>	EQA	<u>-4-I</u>	=					
	r _s	<u>B3LYP</u>	MP2	B3LYP	<u>MP2</u>	_					
a la	2 21868(68)	2 206	2 207	1 979	1 876						
	1 75027(87	1 703	1 762	1.575	1 745						
	1.2422(12)	1.328	1.241	1.492	1.428						
	()	02		0	2	-					
<i>a</i>	0.8278(18)	1.040	0.838	1.696	1.219						
b	2.91887(52)	2.718	2.780	2.664	2.773						
c	0.9459(16)	1.023	1.026	1.100	1.141						
	Isomer 3	EQC	C-4-I			_					
	r _s	B3LYP	MP2								
		01									
<i>a</i> ª	1.81352(84)	1.810	1.779								
<i>b</i>	2.42823(63	2.408	2.404								
C	0.030(51)	0.045	0.070								
ا م ا	0 0022(17)	02	0.001								
<i>a</i>	0.8932(17)	0.863	0.881								
	0 6607(22)	0 707	5.057								
16.1	0.000/123/	0.707	0.7.32								
1-1	Isomor 4	EO	<u> </u>	500	21	=					
	Isomer 4	EQ	C-1-I	EQC	C- 3-I	=					
	Isomer 4	EQ B3LYP O1	C-1-I MP2	EQC B3LYP O	C- 3-I MP2	=					
<i>a</i> ^a	Isomer 4 r _s 1.56268(99)	EQ B3LYP O1 1.693	C-1-I MP2 1.499	EQC B3LYP 0 1.210	C- 3-I MP2 1 1.123	= = -					
<i>a</i> ª <i>b</i>	Isomer 4 <i>r</i> _s 1.56268(99) 2.64337(59)	EQ B3LYP O1 1.693 2.466	C-1-I MP2 1.499 2.546	EQC B3LYP 0 1.210 2.511	C- 3-I MP2 1 1.123 2.554	=					
<i>a</i> ª <i>b</i> <i>c</i>	lsomer 4 r _s 1.56268(99) 2.64337(59) 0.2860(55)	EQ B3LYP O1 1.693 2.466 0.379	C-1-I MP2 1.499 2.546 0.395	EQC B3LYP 0 1.210 2.511 0.315	MP2 1 1.123 2.554 0.303	=					
<i>a</i> ª <i>b</i> <i>c</i>	Isomer 4 r _s 1.56268(99) 2.64337(59) 0.2860(55)	EQ0 B3LYP O1 1.693 2.466 0.379 O2	C-1-I MP2 1.499 2.546 0.395	EQC B3LYP 0 1.210 2.511 0.315 0	- 3-I MP2 1 1.123 2.554 0.303 2	-					
a ª b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11)	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157	C-1-I MP2 1.499 2.546 0.395 1.413	EQC B3LYP 0 1.210 2.511 0.315 0 1.625	- 3-I MP2 11 1.123 2.554 0.303 2 1.753	-					
a ^a b c a b	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708	C-1-I MP2 1.499 2.546 0.395 1.413 2.684	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663	- 3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694	-					
a ^a b c a b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352	- 3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334	= - -					
a ª b c b b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC	C-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III	= - -					
<i>a</i> ^a <i>b</i> <i>c</i> <i>b</i> <i>b</i> <i>c</i>	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ0 B3LYP	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP	C-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2	= - - =					
<i>a</i> ^a <i>b</i> <i>c</i> <i>b</i> <i>b</i> <i>c</i>	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ0 B3LYP O1 2.114	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 2.111	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 0	C-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 2.020	= = - = =					
<i>a</i> ^a <i>b</i> <i>c</i> <i>b</i> <i>c</i> <i>c</i>	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5075(10)	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ0 B3LYP O1 3.114 1.657	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.622	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.452	2-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700	= = - =					
<i>a</i> ^a <i>b</i> <i>c</i> <i>b</i> <i>c</i> <i>a</i> ^a <i>b</i> <i>c</i>	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.266(56)	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ0 B3LYP O1 3.114 1.657 0.234	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465	2-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381	= - -					
<i>a</i> ^a <i>b</i> <i>c</i> <i>b</i> <i>c</i> <i>a</i> ^a <i>b</i> <i>c</i>	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.2966(56)	EQ4 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ4 B3LYP O1 3.114 1.657 0.234 O2	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2	= = - = = -					
a ^a b c a b c a ^a b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18)	EQ4 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ4 B3LYP O1 3.114 1.657 0.234 O2 0.790	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0,587	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765	= = - = -					
a ^a b c a b c c a b	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60)	EQ4 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ4 B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670	= = - = -					
a ª b c c b c a b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17)	EQ4 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ4 B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071	= = - = -					
a ^a b c a b c a ^a b c b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ0 B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 0 2.045 2.453 0.465 0 0 0.587 2.757 0.786 EQA	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071 -4-II	= = - = -					
a ª b c b c a b c b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ0 B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ0 B3LYP	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 2 0.765 2.670 1.071 -4-II MP2	= = = = = =					
a ª b c b c a b c b c	Isomer 4 rs 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 rs 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6	EQ0 B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ0 B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ0 B3LYP O1	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1.700 0.381 2 3.029 1.700 0.381 2 2.670 1.071 -4-II MP2 1						
a ^a b c a b c a ^a b c a ^a	Isomer 4 r_s 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 r_s 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6 r_s 1.90799(96)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ B3LYP O1 1.946	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2 1.937	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP 0 0 0.587 2.757 0.786 0 0 0.587 0.786 0 0 0 0 0 0 0 0 0 0 0 0 0	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071 -4-II MP2 1 1.781						
a ª b c a b c a ª b c a b c	Isomer 4 r_s 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 r_s 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6 r_s 1.90799(96) 1.7305(11)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ B3LYP O1 1.946 1.632	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2 1.937 1.676	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP 0 1.939 1.581	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071 -4-II MP2 1 1.781 1.781 1.661						
a ª b c a b c a ª b c a ª	Isomer 4 r_s 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 r_s 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6 r_s 1.90799(96) 1.7305(11) 1.5120(12)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ B3LYP O1 1.946 1.632 1.590	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2 1.937 1.676 1.541	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP 0 1.939 1.581 1.631	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071 -4-II MP2 1 1.781 1.661 1.643 						
a ª b c b c a b c a b c a a a a a a	Isomer 4 r_s 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 r_s 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6 r_s 1.90799(96) 1.7305(11) 1.5120(12)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ B3LYP O1 1.946 1.632 1.590 O2	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2 1.937 1.676 1.541	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP 0 1.939 1.581 1.631 0 0	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071 -4-II MP2 1 1.781 1.661 1.643 2 2 2 2 2 2 2 2 2 2 2 2 2						
a ª b c b c a b c a b c a a a	Isomer 4 r_s 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 r_s 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6 r_s 1.90799(96) 1.7305(11) 1.5120(12) 0.122(14)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ B3LYP O1 1.946 1.632 1.590 O2 0.411 2.027	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2 1.937 1.676 1.541 0.374	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP 0 1.939 1.581 1.631 0 0 0.612 0 0 0.612 0 0 0 0 0 0 0 0 0 0 0 0 0	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071 -4-II MP2 1 1.781 1.661 1.643 2 0.479 2.094						
a ª b c a b c a b c a b c a	Isomer 4 r_s 1.56268(99) 2.64337(59) 0.2860(55) 1.4114(11) 2.72564(58) 0.000(19) Isomer 5 r_s 3.18344(51) 1.5975(10) 0.2966(56) 0.8856(18) 2.75224(60) 0.9857(17) Isomer 6 r_s 1.90799(96) 1.7305(11) 1.5120(12) 0.122(14) 3.07631(57)	EQ B3LYP O1 1.693 2.466 0.379 O2 1.157 2.708 0.196 EQ B3LYP O1 3.114 1.657 0.234 O2 0.790 2.659 1.032 EQ 0.790 2.659 1.032 EQ 0.790 2.659 1.032 02 0.790 2.659 1.032 C2 0.1 1.946 1.632 1.590 O2 0.411 2.937 0.202	C-1-I MP2 1.499 2.546 0.395 1.413 2.684 0.112 C-2-I MP2 3.111 1.639 0.333 0.822 2.622 1.057 a-4-I MP2 1.937 1.676 1.541 0.374 2.954 0.374 2.954	EQC B3LYP 0 1.210 2.511 0.315 0 1.625 2.663 0.352 EQC B3LYP 0 2.045 2.453 0.465 0 0.587 2.757 0.786 EQA B3LYP 0 1.939 1.581 1.631 0 0.612 2.924 2.924 0 0 0.612 2.924 0 0 0 0 0 0 0 0 0 0 0 0 0	-3-I MP2 1 1.123 2.554 0.303 2 1.753 2.694 0.334 -2-III MP2 1 3.029 1.700 0.381 2 0.765 2.670 1.071 -4-II MP2 1 1.781 1.661 1.643 2 0.479 2.934 0.555 2.634 0.479 2.934 0.555 2.634 0.555 0.479 2.934 0.555 0.647 0.555 0.6479 0.555 0.555 0.6479 0.555 0.555 0.555 0.65						

Table S12 (cont.). Experimental coordinates of the water oxygen atoms for the observed limonene- $(H_2O)_2$ complexes compared with possible equilibrium structures from MP2 and B3LYP-D3BJ calculations using the 6-311++G(d,p) basis set.

	Isomer 7	EQA	A-2-I	EQA	-2-11	EQC	-2-111
	rs	B3LYP	MP2	B3LYP	MP2	B3LYP	MP2
		01		0	1	01	
a ^a	3.13337(52)	3.057	3.091	2.919	2.917	2.045	3.029
b	1.6332(10)	1.748	1.720	1.717	1.706	2.453	1.700
<i>c</i>	0.4568(36)	0.308	0.264	0.550	0.577	0.465	0.381
		02		02		02	
a	0.8678(18)	0.668	0.698	0.697	0.708	0.587	0.765
b	2.94549(54)	2.943	3.029	2.855	2.862	2.757	2.670
<i>c</i>	0.7069(23)	0.611	0.556	0.806	0.833	0.786	1.071

^a Absolute co-ordinate values in Å along the principal axis. ^b rs co-ordinate values determined using Kraitchman equations given with costain errors. ^c Co-ordinates determined using B3LYP-D3BJ/6-311++G(d,p) calculation. ^d Co-ordinates determined using MP2/6-311++G(d,p) calculation.

Table S13. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 1 / EQA-3-II of limonene-(H_2O)₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.

From Limonene to Water1				
Donor	Acceptor	kJ/mol		
BD(1)C3-C4	RY*(1)H30	0.63		
BD(1)C3-C4	RY*(2)H30	0.42		
BD(1)C3-C4	RY*(4)H30	0.46		
BD(2)C3-C4	RY*(4)H30	1.00		
BD(2)C3-C4	BD*(1)O11-H30	21.42		
BD(1)C6-H19	RY*(1)O11	0.46		
From Limonene to W	/ater2			
Donor	Acceptor	kJ/mol		
BD(1)C2-H16	RY*(1)O12	0.71		
BD(1)C2-H16	BD*(1)012-H31	0.50		
From Water1 to Lime	onene			
Donor	Acceptor	kJ/mol		
LP(1)O11	BD*(2)C3-C4	0.54		
LP(2)011	BD*(2)C3-C4	0.59		
From Water1 to Wat	:er2			
Donor	Acceptor	kJ/mol		
LP(1)O11	BD*(1)O12-H32	0.92		
LP(2)O11	RY*(2)O12	0.46		
LP(2)O11	RY*(5)H32	0.46		
LP(2)O11	BD*(1)O12-H32	45.44		
From Water2 to Lime	onene			
Donor	Acceptor	kJ/mol		
BD(1)O12-H31	RY*(1)H16	2.97		
BD(1)O12-H31	RY*(3)H16	0.63		
BD(1)012-H32	RY*(1)H16	0.46		
BD(1)012-H32	BD*(1)C2-H16	0.50		
LP(1)O12	BD*(1)C2-H16	1.05		
LP(2)O12	RY*(1)H22	0.46		
LP(2)O12	BD*(1)C2-H16	2.76		
LP(2)012	BD*(1)C10-H22	7.36		

Table S14. Intermolecular stabilising energy contributions ($\ge 0.42 \text{ kJ mol}^{-1}$) for **isomer 2 / EQA-4-II** of limonene-(H₂O)₂ from Natural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.

From Limonene to Water1			
Donor	Acceptor	kJ/mol	
BD(1)C4-C5	RY*(1)H30	0.50	
BD(1)C4-C5	RY*(2)H30	0.50	
BD(1)C4-C5	RY*(4)H30	0.50	
BD(2)C4-C5	RY*(4)H30	0.88	
BD(2)C4-C5	BD*(1)O11-H30	20.33	
From Limonene to W	ater2		
Donor	Acceptor	kJ/mol	
BD(1)C2-H17	BD*(1)O12-H31	0.59	
From Water1 to Water	er2		
Donor	Acceptor	kJ/mol	
LP(1)O11	BD*(1)O12-H32	0.59	
LP(2)O11	RY*(5)H32	0.42	
LP(2)O11	BD*(1)O12-H32	44.10	
From Water2 to Limo	nene		
Donor	Acceptor	kJ/mol	
BD(1)O12-H31	RY*(1)H13	0.42	
LP(1)O12	BD*(1)C2-H17	2.51	
BD(1)O12-H31	RY*(1)H17	2.64	
BD(1)O12-H32	RY*(1)H17	0.46	
BD(1)O12-H32	BD*(1)C2-H17	0.63	
LP(2)O12	BD*(1)C6-H13	5.52	
From Water2 to Water1			
Donor	Acceptor	kJ/mol	
BD(1)O12-H32	BD*(1)O11-H29	0.42	

Table S15. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 3 / EQC-4-I of limonene-(H_2O)₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.

From Limonene to Water1			
Donor	Acceptor	kJ/mol	
BD(1)C1-C6	RY*(1)H30	0.75	
BD(1)C1-C6	RY*(4)H30	0.50	
BD(2)C1-C6	RY*(4)H30	0.96	
BD(2)C1-C6	BD*(1)O11-H30	20.50	
From Water1 to Limo	onene		
Donor	Acceptor	kJ/mol	
LP(1)O11	BD*(2)C1-C6	0.84	
From Water1 to Water	er2		
Donor	Acceptor	kJ/mol	
LP(2)O11	BD*(1)012-H31	44.81	
LP(1)O11	BD*(1)012-H31	0.88	
LP(2)O11	RY*(2)012	0.63	
From Water2 to Limo	nene		
Donor	Acceptor	kJ/mol	
BD(1)012-H31	RY*(1)H17	0.84	
BD(1)012-H31	RY*(1)H22	0.88	
BD(1)012-H31	BD*(1)C4-H17	0.79	
BD(1)O12-H32	RY*(1)H22	0.50	
LP(1)O12	BD*(1)C8-H22	2.09	
LP(2)012	RY*(1)H17	0.46	
LP(2)012	BD*(1)C4-H17	5.56	
LP(2)O12	BD*(1)C8-H22	2.68	

Table S16. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 4 / EQC-1-I of limonene-(H_2O)₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.

From Limonene to Water1			
Donor	Acceptor	kJ/mol	
BD(1)C3-H16	RY*(1)O11	0.79	
BD(1)C3-H16	BD*(1)O11-H29	0.71	
BD(1)C7-C10	RY*(1)H30	0.79	
BD(2)C7-C10	BD*(1)O11-H30	15.82	
BD(1)C7-C10	RY*(4)H30	0.42	
BD(2)C7-C10	RY*(4)H30	0.50	
From Limonene to W	ater2		
Donor	Acceptor	kJ/mol	
BD(1)C4-C5	RY*(3)H31	0.50	
BD(2)C4-C5	BD*(1)O12-H31	5.69	
From Water1 to Limo	onene		
Donor	Acceptor	kJ/mol	
BD(1)O11-H29	RY*(1)H16	2.80	
BD(1)O11-H29	RY*(4)H16	0.59	
BD(1)O11-H30	BD*(1)C3-H16	0.42	
LP(1)O11	BD*(1)C3-H16	2.55	
LP(1)O11	BD*(2)C7-C10	0.67	
LP(2)O11	BD*(1)C3-H16	0.96	
From Water1 to Water	er2		
Donor	Acceptor	kJ/mol	
LP(2)O11	RY*(3)O12	0.46	
LP(2)O11	BD*(1)O12-H32	30.08	
From Water2 to Limonene			
Donor	Acceptor	kJ/mol	
BD(1)O12-H31	RY*(1)H19	0.50	
BD(1)O12-H32	RY*(1)H19	0.54	
BD(1)O12-H32	BD*(1)C1-H19	0.46	
LP(2)O12	BD*(1)C1-H19	2.89	

Table S17. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 5 / EQC-2-I of limonene-(H_2O)₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.

From Limonene to Water1			
Donor	Acceptor	kJ/mol	
BD(1)C8-C9	RY*(1)H30	0.96	
BD(1)C8-C9	RY*(4)H30	0.59	
BD(2)C8-C9	RY*(4)H30	0.71	
BD(2)C8-C9	BD*(1)O11-H30	20.59	
From Water1 to Limo	nene		
Donor	Acceptor	kJ/mol	
LP(2)O11	BD*(2)C8-C9	0.63	
From Water1 to Water	er2		
Donor	Acceptor	kJ/mol	
LP(1)O11	BD*(1)O12-H31	0.54	
LP(2)O11	RY*(2)O12	0.46	
LP(2)O11	RY*(3)O12	0.46	
LP(2)O11	BD*(1)O12-H31	43.51	
From Water2 to Limo	nene		
Donor	Acceptor	kJ/mol	
BD(1)O12-H31	RY*(1)H13	0.42	
BD(1)O12-H32	RY*(1)H13	0.79	
LP(1)O12	BD*(1)C5-H13	2.18	
LP(2)O12	RY*(2)H17	0.42	
LP(2)O12	BD*(1)C1-H17	3.93	
LP(2)O12	BD*(1)C5-H13	0.79	
From Water2 to Water1			
Donor	Acceptor	kJ/mol	
BD(1)O12-H31	BD*(1)O11-H29	0.46	

Table S18. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 6 / EQa-4-I of limonene-(H_2O)₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.

From Limonene to Water1			
Donor	Acceptor	kJ/mol	
BD(1)C4-C5	RY*(1)H32	0.67	
BD(1)C4-C5	RY*(4)H32	0.50	
BD(2)C4-C5	RY*(4)H32	0.88	
BD(2)C4-C5	BD*(1)O11-H32	20.08	
From Limonene to	o Water2		
Donor	Acceptor	kJ/mol	
BD(1)C1-H18	BD*(1)O12-H30	0.75	
From Water1 to L	imonene		
Donor	Acceptor	kJ/mol	
LP(2)011	BD*(1)C1-H18	0.46	
From Water1 to Water2			
Donor	Acceptor	kJ/mol	
LP(1)O11	BD*(1)O12-H29	0.67	
LP(2)O11	RY*(5)H29	0.50	
LP(2)O11	BD*(1)O12-H29	43.56	
From Water2 to Limonene			
Donor	Acceptor	kJ/mol	
BD(1)O12-H29	RY*(1)H18	0.67	
BD(1)O12-H29	BD*(1)C1-H18	0.84	
LP(1)O12	BD*(1)C1-H18	2.59	
LP(2)O12	BD*(1)C3-H26	3.81	
BD(1)O12-H30	RY*(1)H18	2.85	
From Water2 to V	Water1		
Donor	Acceptor	kJ/mol	
BD(1)O12-H29	BD*(1)011-H31	0.46	

Table S19. Intermolecular stabilising energy contributions ($\geq 0.42 \text{ kJ mol}^{-1}$) for isomer 7 / EQA-2-I of limonene-(H_2O)₂ fromNatural Bond Orbital (NBO) analysis at the B3LYP-D3BJ/6-311++G(d,p) level of theory.

From Limonene to Water1			
Donor	Acceptor	kJ/mol	
BD(1)C8-C9	RY*(1)H30	1.05	
BD(1)C8-C9	RY*(4)H30	0.50	
BD(2)C8-C9	RY*(4)H30	0.67	
BD(2)C8-C9	BD*(1)O11-H30	20.17	
From Water1 to Wa	ter2		
Donor	Acceptor	kJ/mol	
BD(1)O11-H29	RY*(2)H31	0.46	
LP(1)O11	BD*(1)012-H31	1.17	
LP(2)011	RY*(2)O12	0.50	
LP(2)011	RY*(4)O12	0.42	
LP(2)O11	BD*(1)012-H31	42.59	
From Water2 to Limonene			
Donor	Acceptor	kJ/mol	
BD(1)O12-H31	RY*(1)H13	0.54	
BD(1)O12-H32	RY*(1)H13	1.09	
LP(1)O12	BD*(1)C3-H13	1.38	
LP(2)012	BD*(1)C3-H13	3.60	
LP(2)O12	BD*(1)C5-H17	1.26	
From Water2 to Water1			
Donor	Acceptor	kJ/mol	
BD(1)O12-H31	BD*(1)O11-H29	0.46	
LP(1)O12	RY*(1)O11	0.46	

Figure S1. Plots of the reduced density gradient (RDG) versus sign($\lambda 2$) ρ for the observed isomers of limonene-(H₂O)₂.

Table S20. Cartesian coordinates of isomer 1 / EQA-3-II from B3LYP-D3BJ/6-311++G(d,p) calculati

	<u> </u>	<u>Y</u>	<u>Z</u>
C	-1.00074	-0.96339	-0.09599
C C	1 22322	-0.46932	-1 19283
C	1 88246	-1 00457	-0 15521
C	1 16881	-1 36556	1 12726
C C	-0 23584	-0 76346	1 22258
C	3 35595	-1 30624	-0 20206
C	-2 45802	-0 56016	-0.01618
C	-3.41578	-1.39165	-0.43293
č	-2.77449	0.80391	0.53967
0	2.10483	2.15273	0.41460
Ō	-0.39628	3.25291	-0.27911
н	1.11760	-2.46087	1.19947
Н	1.77960	-0.22439	-2.09603
н	-0.66042	-0.54015	-2.19219
н	-0.46044	0.85837	-1.16417
Н	-0.96673	-2.03296	-0.33589
Н	-0.78401	-1.21980	2.05173
Н	-0.15761	0.30661	1.44028
Н	-4.46383	-1.11321	-0.40236
Н	-3.18109	-2.37773	-0.82059
Н	-2.17395	1.58705	0.06908
Н	-3.83163	1.04229	0.40914
Н	-2.55131	0.84410	1.61170
Н	3.79675	-1.03142	-1.16276
Н	3.53334	-2.37548	-0.04020
Н	3.89365	-0.77758	0.59333
Н	1.77680	-1.04220	1.98031
Н	2.91146	2.49881	0.02036
Н	1.99741	1.25830	0.04332
Н	-0.64149	3.99850	0.27552
Н	0.49242	2.98684	0.01852

Table S21. Cartesian coordinates of isomer 2 / EQA-4-II from B3LYP-D3BJ/6-311++G(d,p) calcula

	Х	Y	Z
С	-0.56347	-0.70956	-1.27506
С	-1.01418	-0.03146	0.02970
С	-0.46498	-0.82848	1.22886
С	0.98411	-1.20598	1.05509
С	1.64464	-1.14825	-0.11045
С	0.96346	-0.70018	-1.38213
С	-2.51267	0.17197	0.10948
С	-3.40009	-1.04073	-0.01185
С	3.09635	-1.52167	-0.23062
С	-3.02253	1.39554	0.26609
0	2.20077	1.72760	1.32282
0	1.04157	2.72081	-1.04155
Н	1.30711	0.31028	-1.63510
Н	1.50610	-1.57099	1.93826
Н	-0.59175	-0.24041	2.14537
Н	-1.05340	-1.74169	1.38349
Н	-0.55267	0.96037	0.04608
Н	-1.00105	-0.19192	-2.13253
Н	-0.92460	-1.74409	-1.29747
Н	-4.09314	1.56293	0.32232
Н	-2.38177	2.26847	0.32835
Н	-3.16854	-1.79081	0.75098
Н	-4.45188	-0.76880	0.09102
Н	-3.26978	-1.52861	-0.98311
Н	3.53271	-1.78313	0.73558
Н	3.67479	-0.69514	-0.65813
Н	3.21911	-2.37454	-0.90726
Н	1.28994	-1.34831	-2.20394
Н	1.83242	1.96797	2.17858
Н	1.95357	0.79500	1.18706
Н	1.45723	3.50776	-1.40393
Н	1.51309	2.53116	-0.21048

Table S22. Cartes	ian coordinates of isom	er 3 / EQC-4-I from B	3LYP-D3BJ/6-311++G(d	,p) calculations.
-------------------	--------------------------------	-----------------------	----------------------	-------------------

	Х	Y	Ζ
C	2.02380	-0.81330	0.14463
c	1.51515	-1.20337	-1.13000
C	-0.10629	-1.52592	-0.91414
C	-0.64294	-0.45795	-0.07562
C	-0.10070	-0.37259	1.31072
C	1.33517	-0.45248	1.23632
C	-2.34/4/	-0.56119	0.06192
C	-3.03121	0.62514	0.69399
C	3.52647	-0.86200	0.11393
C	-3.03723	-1.62897	-0.34568
0	1.78630	2.42036	-0.07867
0	-0.88818	3.01845	-0.76114
н	1.42349	-0.39380	-1.86228
Н	1.88220	-0.21828	2.14841
н	-0.45310	0.55117	1.82252
Н	-0.54348	-1.19200	1.93823
Н	-0.66172	0.52582	-0.56877
Н	-0.67003	-1.62618	-1.87972
Н	-0.25636	-2.49178	-0.40366
Н	-4.11522	-1.67194	-0.23280
Н	-2.56519	-2.48889	-0.80421
Н	-2.70899	1.55410	0.21445
Н	-4.11709	0.53903	0.62358
Н	-2.77227	0.71092	1.75517
Н	3.96484	-0.52613	1.05618
Н	3.91991	-0.23426	-0.69359
Н	3.87532	-1.88183	-0.08219
Н	1.82622	-2.06840	-1.57040
Н	2.22938	2.92094	0.61329
Н	1.78787	1.49514	0.22594
Н	0.05781	2.90549	-0.55845
Н	-0.91733	3.48934	-1.59846

Table S23	. Cartesian	coordinates	of isomer 4	/ EQC-1-I from	B3LYP-D3BJ/6	-311++G(d,p)	calculations.
-----------	-------------	-------------	-------------	----------------	--------------	--------------	---------------

	<u> </u>	<u>Y</u>	<u>Z</u>
C C	0.17441 -0.60938	-0.48401 -1.02817	1.31642 0.11907
C	-0.03905	-0.45403	-1.20026
C	1.46361	-0.37422	-1.21170
С	2.24714	-0.55451	-0.14333
С	1.65959	-0.83733	1.21847
С	-2.11031	-0.82290	0.19504
С	-2.91149	-1.41032	-0.93858
С	3.74691	-0.49596	-0.22176
С	-2.71523	-0.16914	1.19503
0	-1.70351	2.46160	-0.39705
0	1.14812	2.72586	0.16176
Н	1.81787	-1.89833	1.45777
Н	1.92412	-0.16123	-2.17386
Н	-0.36399	-1.07351	-2.04243
Н	-0.46272	0.54023	-1.38783
Н	-0.44813	-2.11604	0.08505
Н	-0.23654	-0.88326	2.24755
Н	0.07735	0.60463	1.35832
Н	-3.79530	-0.06797	1.21987
Н	-2.16857	0.24479	2.03302
Н	-2.65695	-2.46538	-1.08470
Н	-3.98338	-1.33666	-0.74934
Н	-2.69660	-0.89914	-1.88176
Н	4.09373	-0.32852	-1.24328
Н	4.19077	-1.42976	0.14243
Н	4.13851	0.30710	0.41248
Н	2.21992	-0.27629	1.97432
Н	-2.26960	3.21058	-0.18623
Н	-2.10561	1.69107	0.03616
Н	1.52653	1.93724	-0.24535
Н	0.20442	2.68428	-0.06019

Table S24. Cartesian coordinates of isomer !	/ EQC-2-I from B3LYP-D3	3BJ/6-311++G(d,p) calculations.
--	--------------------------------	---------------------------------

	X	Y	Z
С	0.22682	-0.57047	-0.06392
С	-0.79313	-1.66363	-0.45391
С	-2.20752	-1.14731	-0.47185
С	-2.59228	0.01854	0.05422
С	-1.61399	0.92253	0.76469
С	-0.31118	0.21157	1.13734
С	-4.00870	0.51424	-0.03433
С	1.60981	-1.16073	0.10912
С	2.24943	-1.21488	1.28495
С	2.24997	-1.69895	-1.14501
0	3.08280	1.71483	0.19692
0	0.74242	2.64918	-1.09097
Н	-1.38474	1.78405	0.12570
Н	-2.94599	-1.77672	-0.96336
Н	-0.54955	-2.06790	-1.44172
Н	-0.70702	-2.50716	0.24571
Н	0.28149	0.13516	-0.90256
Н	0.42169	0.94964	1.47352
Н	-0.49156	-0.47492	1.97314
Н	3.23250	-1.66717	1.36609
Н	1.80142	-0.85236	2.20202
Н	2.26105	-0.93502	-1.92915
Н	3.27420	-2.02941	-0.96498
Н	1.68331	-2.54830	-1.53807
Н	-4.64564	-0.17373	-0.59425
Н	-4.04585	1.49347	-0.52572
Н	-4.43995	0.64782	0.96460
Н	-2.08891	1.32802	1.66619
Н	3.44717	2.15840	0.96894
Н	2.86889	0.81108	0.48822
Н	1.58617	2.41359	-0.66503
Н	0.98412	3.13410	-1.88460

Table S25. Cartesian coordinates of isomer 6	/ EQa-4-I from B3LYP-D3E	BJ/6-311++G(d,p) calculations.
--	--------------------------	--------------------------------

	Х	Y	Ζ
C	-0.96074	-0.28005	0.05580
C C	1 05740	-0.28330	-1 /7185
C C	1 87202	-0.28220	-0 3/350
C C	1 20077	-0.93044	0.54550
C C	0.20077	1 20124	0.75505
C	-0.20700	1 02/50	0.57520
C C	2 17201	0 24454	0.32330
C	2 11251	-0.24434	0.13238
C	2 21/20	1 10007	0.49310
C O	-3.21469	-1.19007	1 62000
0	1.91955	2.04504	1.05090
0	4 20621	2.94594	-0.52041
	-4.29031	-1.11109	0.74328
	-2./84/1	-2.00000	1.18280
	-4.19251	0.97739	-0.33048
	-2.08/13	1.88700	-0.07338
	-2.92047	1.00990	-1.57083
н	-0.61768	0.71934	0.34956
н	-0.49564	-1.05278	2.02603
н	-0.71970	-2.29/42	0.81981
н	1.78900	-1.87469	1.52680
н	3.80217	-1.46/31	0.34960
н	3.75188	-0.04840	-0.71391
н	3.55104	-1.65613	-1.39588
н	1.44049	-0.66786	-2.42458
н	1.26690	0.79365	-1.47502
н	-0./03/8	-1.53267	-1.68032
н	-0.95882	0.1631/	-2.08023
н	0.94597	2.62991	0.40047
Н	0.6/236	3.83675	-0.519/1
Н	1.65263	1.60291	2.55507
Н	1.83527	0.70526	1.31505

Table S	526.	Cartesian	coordinates	of isomer 7	/ EQA-2-I	from B3LYP-	D3BJ/6-31	1++G(d.p)	calculations.
							2020,002		

	Х	Y	Z
С	-2.19183	-1.09483	-0.64682
С	-2.54717	-0.00158	0.03440
С	-1.54118	0.80212	0.82328
С	-0.22997	0.04845	1.05475
С	0.25618	-0.58861	-0.25702
С	-0.78395	-1.62288	-0.73366
С	-3.95943	0.51357	0.04753
С	1.63530	-1.20587	-0.16212
С	2.55630	-0.98301	-1.10881
С	1.92816	-2.09914	1.01527
0	3.01822	1.81493	0.29672
0	0.60212	2.96464	-0.61048
Н	-1.32934	1.74062	0.29782
Н	-2.95153	-1.64845	-1.19408
Н	-0.55752	-1.90840	-1.76669
Н	-0.69836	-2.54630	-0.14479
Н	0.29457	0.20785	-1.00679
Н	0.52557	0.73465	1.44790
Н	-0.38522	-0.73414	1.80610
Н	3.53338	-1.45424	-1.07695
Н	2.34187	-0.35034	-1.96431
Н	1.18717	-2.90015	1.09651
Н	2.91626	-2.55475	0.93314
Н	1.88310	-1.53917	1.95454
Н	-4.61889	-0.09421	-0.57559
Н	-3.99737	1.54636	-0.31783
Н	-4.36302	0.52647	1.06668
Н	-1.98259	1.08468	1.78678
Н	3.32353	1.81018	1.20886
Н	2.91602	0.88130	0.04260
Н	1.46426	2.66885	-0.26817
Н	0.80102	3.68339	-1.21645

			J′	K'-1	<i>K</i> ′ ₊₁	J‴	<i>K</i> " ₋₁ <i>K</i> " ₊₁	V _{obs}	v_{obs} - v_{calc}
2	1	1	1	1	0	2225.8395	-0.0008		
3	1	3	2	1	2	2815.6395	-0.0001		
3	0	3	2	0	2	2924.2405	-0.0006		
3	2	2	2	2	1	3090.1294	-0.0018		
3	2	1	2	2	0	3256.0312	-0.0006		
3	1	2	2	1	1	3304.3425	0.0006		
4	0	4	3	0	3	3783.4761	-0.0005		
4	2	3	3	2	2	4083.3389	0.0012		
4	3	2	3	3	1	4192.9554	0.0009		
4	3	1	3	3	0	4241.1819	-0.0070		
4	1	3	3	1	2	4330.6149	0.0007		
4	2	2	3	2	1	4418.7507	-0.0002		
5	1	5	4	1	4	4599.5010	0.0015		
5	0	5	4	0	4	4631.9765	-0.0010		
5	2	4	4	2	3	5047.7071	0.0024		
5	3	3	4	3	2	5241.4692	0.0003		
5	4	2	4	4	1	5252.6209	0.0001		
5	1	4	4	1	3	5279.8477	-0.0013		
5	3	2	4	3	1	5389.6398	0.0063		
6	1	6	5	1	5	5472.7525	0.0003		
6	0	6	5	0	5	5486.1607	-0.0006		
5	2	3	4	2	2	5555.9945	0.0010		
6	2	5	5	2	4	5981.7957	0.0013		
6	1	5	5	1	4	6152.8771	-0.0020		
6	3	4	5	3	3	6270.7061	0.0013		
6	4	3	5	4	2	6325.6023	0.0022		
7	1	7	6	1	6	6340.6926	0.0009		
7	0	7	6	0	6	6345.7582	-0.0014		
6	4	2	5	4	1	6367.2918	-0.0016		
6	3	3	5	3	2	6583.2769	-0.0008		
6	2	4	5	2	3	6634.1425	0.0018		
7	2	6	6	2	5	6889.0557	0.0063		
7	1	6	6	1	5	6988.6949	-0.0041		
8	1	8	7	1	7	7206.2905	0.0008		
8	0	8	7	0	7	7208.0950	-0.0057		
7	3	5	6	3	4	7271.1175	-0.0002		
7	4	4	6	4	3	7396.4819	-0.0023		
7	4	3	6	4	2	7518.7954	-0.0027		
7	2	5	6	2	4	7630.9362	-0.0029		
8	2	7	7	2	6	7776.4352	0.0055		
8	1	7	7	1	6	7825.0100	0.0014	_	

 Table S27. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 1 / EQA-3-II.

			J′	K'-1	K' ₊₁	J″ k	κ ^{''} -1 κ ^{''} +1	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2770.9011	-0.0026		
3	0	3	2	0	2	2877.9819	-0.0035		
3	2	2	2	2	1	3043.5840	0.0057		
3	2	1	2	2	0	3209.1768	0.0000		
3	1	2	2	1	1	3255.9846	0.0224		
4	1	4	3	1	3	3656.3610	0.0169		
4	0	4	3	0	3	3722.6041	-0.0030		
4	2	3	3	2	2	4021.2693	-0.0033		
4	3	2	3	3	1	4130.7407	-0.0037		
4	3	1	3	3	0	4179.2646	-0.0042		
4	1	3	3	1	2	4265.9986	-0.0015		
4	2	2	3	2	1	4355.4537	-0.0033		
5	1	5	4	1	4	4525.2840	-0.0027		
5	0	5	4	0	4	4556.9383	-0.0006		
5	2	4	4	2	3	4970.1683	-0.0014		
5	3	3	4	3	2	5163.4848	-0.0004		
5	1	4	4	1	3	5199.0531	-0.0025		
5	3	2	4	3	1	5312.2457	-0.0008		
6	1	6	5	1	5	5384.0049	-0.0017		
6	0	6	5	0	5	5396.9981	-0.0037		
5	2	3	4	2	2	5475.7540	-0.0025		
6	2	5	5	2	4	5888.9044	-0.0009		
6	1	5	5	1	4	6056.5984	-0.0024		
6	3	4	5	3	3	6176.8168	-0.0011		
7	1	7	6	1	6	6237.5150	0.0012		
7	0	7	6	0	6	6242.3963	-0.0028		
6	3	3	5	3	2	6489.7070	0.0006		
6	2	4	5	2	3	6536.7532	-0.0028		
7	2	6	6	2	5	6781.0129	0.0023		
7	1	6	6	1	5	6878.0257	-0.0022		
8	1	8	7	1	7	7088.7417	0.0046		
8	0	8	7	0	7	7090.4747	0.0009		
7	3	5	6	3	4	7161.2728	0.0042		
7	2	5	6	2	4	7516.3269	-0.0011		
7	3	4	6	3	3	7663.3319	0.0008		
8	1	7	7	1	6	7700.4919	0.0060		
9	1	9	8	1	8	7939.0769	0.0074		
9	0	9	8	0	8	7939.6519	-0.0117		

Table S28. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)(H_2^{16}O)$ isotopologue of isomer 1/ EQA-3-II.

			J′	K'-1	<i>K</i> ′ ₊₁	J‴ K‴ ₋₁	<i>K</i> ′′′ ₊₁	V _{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2776.1333	-0.0024		
3	0	3	2	0	2	2876.0654	0.0019		
3	2	2	2	2	1	3066.5797	-0.0024		
3	2	1	2	2	0	3257.1088	-0.0014		
3	1	2	2	1	1	3285.2796	0.0004		
4	1	4	3	1	3	3658.2739	0.0020		
4	0	4	3	0	3	3714.2245	-0.0032		
4	2	3	3	2	2	4045.1542	-0.0015		
4	3	2	3	3	1	4172.1989	-0.0002		
4	3	1	3	3	0	4235.7816	0.0023		
4	1	3	3	1	2	4288.7986	0.0008		
4	2	2	3	2	1	4417.7397	0.0016		
5	1	5	4	1	4	4523.4643	0.0000		
5	0	5	4	0	4	4547.6089	0.0015		
5	2	4	4	2	3	4990.4369	0.0035		
5	1	4	4	1	3	5202.8647	0.0002		
5	3	3	4	3	2	5211.0280	-0.0043		
6	1	6	5	1	5	5379.0674	-0.0002		
6	0	6	5	0	5	5388.0707	-0.0008		
5	3	2	4	3	1	5398.9455	-0.0006		
5	2	3	4	2	2	5538.7716	0.0004		
6	2	5	5	2	4	5902.3233	0.0022		
6	1	5	5	1	4	6042.3881	-0.0004		
6	3	4	5	3	3	6224.4732	0.0004		
7	1	7	6	1	6	6230.2525	0.0002		
7	0	7	6	0	6	6233.3379	-0.0012		
6	2	4	5	2	3	6585.8034	-0.0013		
6	3	3	5	3	2	6599.3333	0.0015		
7	2	6	6	2	5	6786.7020	0.0025		
7	1	6	6	1	5	6858.8025	0.0008		
8	1	8	7	1	7	7079.6991	0.0032		
8	0	8	7	0	7	7080.6948	-0.0039		
7	3	5	6	3	4	7202.7999	-0.0003		
7	2	5	6	2	4	7535.4108	-0.0012		
7	3	4	6	3	3	7773.6385	-0.0007		

Table S29. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ $(H_2^{18}O)$ isotopologue of isomer 1 / EQA-3-II.

	•								
			J′	K'-1	<i>K</i> ′ ₊₁	J‴ K‴ ₋₁	<i>K</i> ′′′ ₊₁	v_{obs}	V _{obs} -V _{calc}
3	1	3	2	1	2	2733.1916	0.0005		
3	0	3	2	0	2	2831.8659	0.0078		
3	2	2	2	2	1	3021.1502	-0.0004		
3	2	1	2	2	0	3210.4457	-0.0033		
3	1	2	2	1	1	3237.7466	0.0039		
4	1	4	3	1	3	3601.3096	-0.0009		
4	2	3	3	2	2	3984.8223	0.0010		
4	3	2	3	3	1	4111.0861	-0.0014		
4	3	1	3	3	0	4174.4930	-0.0010		
4	1	3	3	1	2	4225.8581	0.0039		
4	2	2	3	2	1	4354.6560	0.0027		
5	1	5	4	1	4	4452.6499	-0.0033		
5	0	5	4	0	4	4476.3478	-0.0003		
5	2	4	4	2	3	4915.4066	0.0005		
5	1	4	4	1	3	5125.0937	0.0026		
5	3	3	4	3	2	5134.5379	-0.0014		
5	4	2	4	4	1	5154.9817	-0.0144		
5	4	1	4	4	0	5170.0237	0.0029		
6	1	6	5	1	5	5294.5269	0.0000		
6	0	6	5	0	5	5303.3358	-0.0028		
5	3	2	4	3	1	5321.7157	-0.0030		
5	2	3	4	2	2	5459.2595	0.0003		
6	2	5	5	2	4	5812.8594	0.0014		
6	1	5	5	1	4	5950.6690	0.0023		
7	1	7	6	1	6	6132.0496	-0.0003		
6	3	4	5	3	3	6132.6743	-0.0005		
7	0	7	6	0	6	6135.0609	-0.0017		
6	4	3	5	4	2	6208.9166	-0.0025		
6	4	2	5	4	1	6270.4702	0.0154		
6	2	4	5	2	3	6490.1770	-0.0042		
6	3	3	5	3	2	6505.4673	0.0008		
7	2	6	6	2	5	6683.0753	0.0035		
7	1	6	6	1	5	6753.7670	0.0004		
8	1	8	7	1	7	6967.8720	0.0090		
8	0	8	7	0	7	6968.8276	-0.0115		
7	3	5	6	3	4	7095.8743	-0.0019		
7	2	5	6	2	4	7424.2212	-0.0066		
7	4	3	6	4	2	7428.3894	0.0011		
8	1	7	7	1	6	7565.6426	0.0063		

7 3 4 6 3 3 7662.7087

Table S30. Measured frequencies and residuals (in MHz) of the rotational transitions of the ($H_2^{18}O$) ($H_2^{18}O$) isotopologue of isomer 1 / EQA-3-II.

-0.0021

· • · · · ·									
			J′	K'-1	<i>K</i> ′ ₊₁	J'' K''-1	<i>K</i> ′′′ ₊₁	v_{obs}	V _{obs} -V _{calo}
2	1	1	1	0	1	2703.0340	-0.0032		
3	0	3	2	1	2	2740.1899	0.0000		
3	1	3	2	1	2	2931.4708	0.0023		
3	0	3	2	0	2	3034.4714	-0.0005		
3	2	2	2	2	1	3120.1613	0.0011		
3	2	1	2	2	0	3205.8666	-0.0047		
3	1	3	2	0	2	3225.7533	0.0028		
3	1	2	2	1	1	3279.9859	0.0017		
2	2	1	1	1	0	3363.2767	-0.0121		
2	2	0	1	1	0	3385.9992	0.0002		
2	2	0	1	1	1	3503.1115	-0.0005		
4	0	4	3	1	3	3779.7695	0.0077		
4	1	4	3	1	3	3887.8062	0.0014		
3	1	2	2	0	2	3925.6012	-0.0020		
4	0	4	3	0	3	3971.0415	0.0011		
4	2	3	3	2	2	4142.3709	-0.0042		
4	3	2	3	3	1	4198.3602	0.0057		
4	3	1	3	3	0	4214.7937	-0.0157		
3	2	2	2	1	1	4286.2096	-0.0027		
4	2	2	3	2	1	4331.2706	-0.0012		
4	1	3	3	1	2	4339.7843	0.0022		
3	2	1	2	1	1	4394.6349	0.0013		
3	2	2	2	1	2	4637.5496	0.0003		
3	2	1	2	1	2	4745.9682	-0.0024		
5	0	5	4	1	4	4777.9024	0.0036		
5	0	5	4	0	4	4885.9434	0.0017		
5	1	5	4	0	4	4940.7228	-0.0008		
4	2	3	3	1	2	5148.6118	0.0087		
5	2	4	4	2	3	5149.9379	0.0018		
4	1	3	3	0	3	5230.9089	-0.0046		
5	3	3	4	3	2	5253.3456	0.0052		
5	3	2	4	3	1	5307.6981	0.0019		
5	1	4	4	1	3	5363.8261	0.0025		
4	2	2	3	1	2	5445.9164	-0.0047		
5	2	3	4	2	2	5461.9769	-0.0007		
6	0	6	5	1	5	5742.7638	0.0001		
6	1	6	5	1	5	5768.5563	0.0013		
6	0	6	5	0	5	5797.5447	-0.0009		
6	1	6	5	0	5	5823.3377	0.0008		
4	2	3	3	1	3	5848.4524	-0.0035		
5	2	4	4	1	3	5958.7458	-0.0114		
6	2	5	5	2	4	6140.6611	0.0034		
6	3	4	5	3	3	6302.9278	-0.0004		
6	1	5	5	1	4	6341.1212	0.0030		
6	3	3	5	3	2	6432.7072	-0.0031		
4	3	2	3	2	2	6447.5784	0.0081		
5	2	3	4	1	3	6568.1108	-0.0059		
6	2	4	5	2	3	6573.4634	-0.0034		
5	1	4	4	0	4	6623.7016	0.0049		
7	- 0	7	6	1	6	6686.8444	0.0006		
, 7	1	, 7	6	- 1	6	6698.3926	0.0014		
, 7	0	, 7	6	0	6	6712.6375	0.0024		
, 7	1	, 7	6	0	6	6724,1765	-0.0061		
, 6	2	, 5	5	1	4	6735 5845	-0.0068		
0	2	5	5	-	-	0700.0040	0.0000		

 Table S31. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 2 / EQA-4-II.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
7 3 5 6 3 4 7341.4765 -0.0026 5 3 3 4 2 3 7558.5397 0.0040 7 3 4 6 3 3 7584.8817 -0.0065 8 1 8 7 1 7 7624.6677 -0.0091 8 0 8 7 0 7 7631.2364 0.0019 8 1 8 7 0 7 7636.2326 0.0084 7 2 5 6 2 4 7650.2993 0.0033 6 2 4 5 1 4 777.7692 0.0094
5 3 3 4 2 3 7558.5397 0.0040 7 3 4 6 3 3 7584.8817 -0.0065 8 1 8 7 1 7 7624.6677 -0.0091 8 0 8 7 0 7 7631.2364 0.0019 8 1 8 7 0 7 7636.2326 0.0084 7 2 5 6 2 4 7650.2993 0.0033 6 2 4 5 1 4 7777.7692 0.0094
7 3 4 6 3 3 7584.8817 -0.0065 8 1 8 7 1 7 7624.6677 -0.0091 8 0 8 7 0 7 7631.2364 0.0019 8 1 8 7 0 7 7636.2326 0.0084 7 2 5 6 2 4 7650.2993 0.0033 6 2 4 5 1 4 7777.7692 0.0094
8 1 8 7 1 7 7624.6677 -0.0091 8 0 8 7 0 7 7631.2364 0.0019 8 1 8 7 0 7 7636.2326 0.0084 7 2 5 6 2 4 7650.2993 0.0033 6 2 4 5 1 4 7777.7692 0.0094
8 0 8 7 0 7 7631.2364 0.0019 8 1 8 7 0 7 7636.2326 0.0084 7 2 5 6 2 4 7650.2993 0.0033 6 2 4 5 1 4 7777.7692 0.0094
8 1 8 7 0 7 7636.2326 0.0084 7 2 5 6 2 4 7650.2993 0.0033 6 2 4 5 1 4 7777.7692 0.0094
7 2 5 6 2 4 7650.2993 0.0033 6 2 4 5 1 4 7777.7692 0.0094
<u>6 2 4 5 1 4 7777.7692 0.0094</u>

The $5_{1,5} \leftarrow 4_{1,4}$ transition appeared as a shoulder of a water heptamer transition and cold not be measured adequately.

			J′	K'-1	<i>K</i> ′ ₊₁	J‴	<i>K</i> ′′′ ₋₁ <i>K</i> ′′′ ₊₁	V _{obs}	v_{obs} - v_{calc}
2	1	1	1	0	1	2661.5586	-0.0094		
3	1	3	2	1	2	2889.1735	-0.0003		
3	0	3	2	0	2	2990.3403	0.0002		
3	1	2	2	1	1	3232.3296	0.0003		
2	2	0	1	1	0	3330.4967	0.0121		
4	0	4	3	1	3	3726.3591	-0.0015		
4	1	4	3	1	3	3831.6673	0.0014		
4	0	4	3	0	3	3913.2201	-0.0018		
4	2	3	3	2	2	4082.3952	-0.0016		
4	2	2	3	2	1	4268.9323	0.0022		
4	1	3	3	1	2	4276.5948	0.0051		
3	2	1	2	1	1	4324.8633	-0.0018		
3	2	2	2	1	2	4563.6554	-0.0064		
5	1	5	4	1	4	4762.8611	0.0004		
5	0	5	4	0	4	4814.9045	0.0030		
5	1	5	4	0	4	4868.1657	-0.0003		
5	2	4	4	2	3	5075.2833	0.0025		
5	1	4	4	1	3	5285.4629	0.0013		
5	2	3	4	2	2	5383.1454	0.0057		
6	0	6	5	1	5	5660.1882	0.0045		
6	1	6	5	1	5	5685.2037	0.0033		
6	0	6	5	0	5	5713.4469	-0.0012		
6	1	6	5	0	5	5738.4530	-0.0119		
4	2	3	3	1	3	5756.8875	0.0028		
6	2	5	5	2	4	6051.5317	0.0011		
6	1	5	5	1	4	6248.1328	-0.0105		
5	2	3	4	1	3	6468.0151	-0.0007		
6	2	4	5	2	3	6478.1898	-0.0022		
5	1	4	4	0	4	6524.8011	-0.0019		
7	0	7	6	1	6	6590.4408	0.0006		
7	1	7	6	1	6	6601.6121	-0.0024		
7	1	7	6	0	6	6626.6352	0.0039		
7	1	6	6	1	5	7166.3966	0.0043	_	

Table S32. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)(H_2^{16}O)$ isotopologue of isomer 2 / EQA-4-II.

			J'	К' ₋₁	<i>K</i> ′ ₊₁	J'' K'' ₋₁	<i>K</i> ′′′ ₊₁	V _{obs}	V _{obs} -V _{calc}
2	1	1	1	0	1	2663.7346	-0.0003		
3	0	3	2	1	2	2731.0696	0.0013		
3	1	3	2	1	2	2892.1055	0.0055		
3	0	3	2	0	2	2992.4009	-0.0045		
3	1	3	2	0	2	3153.4392	0.0020		
3	1	2	2	1	1	3256.4868	-0.0016		
2	2	0	1	1	0	3282.5632	-0.0018		
2	2	1	1	1	1	3378.7226	-0.0038		
4	0	4	3	1	3	3747.1906	-0.0071		
4	1	4	3	1	3	3832.4687	0.0004		
3	1	2	2	0	2	3885.9133	0.0026		
4	0	4	3	0	3	3908.2318	0.0024		
4	1	4	3	0	3	3993.5120	0.0119		
4	2	3	3	2	2	4100.7629	0.0039		
3	2	1	2	1	1	4289.1132	-0.0045		
4	1	3	3	1	2	4301.8154	0.0015		
4	2	2	3	2	1	4313.7667	0.0013		
3	2	2	2	1	2	4531.8157	0.0018		
5	1	5	4	1	4	4760.5544	-0.0050		
5	0	5	4	0	4	4805.4135	-0.0033		
5	1	5	4	0	4	4845.8299	-0.0002		
5	1	4	4	1	3	5304.3152	-0.0001		
4	2	2	3	1	2	5346.3984	0.0036		
5	2	3	4	2	2	5436.6041	-0.0069		
6	0	6	5	1	5	5661.7692	-0.0009		
6	1	6	5	1	5	5679.5638	-0.0005		
6	0	6	5	0	5	5702.1846	0.0014		
6	1	6	5	0	5	5719.9677	-0.0098		
6	2	5	5	2	4	6066.7359	0.0059		
6	3	4	5	3	3	6249.5173	-0.0021		
6	1	5	5	1	4	6253.7030	0.0034		
6	3	3	5	3	2	6411.0296	-0.0018		
5	2	3	4	1	3	6481.1905	-0.0015		
6	2	4	5	2	3	6532.5872	-0.0008		
7	0	7	6	1	6	6585.4432	0.0131		
5	1	4	4	0	4	6591.4056	0.0007		
7	0	7	6	0	6	6603.2203	-0.0041		
7	1	7	6	0	6	6610.6807	-0.0014		
7	1	6	6	1	5	7158.3444	-0.0042		
7	3	4	6	3	3	7564.4422	0.0006		
6	2	4	5	1	4	7709.4680	0.0032		

Table S33. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ $(H_2^{18}O)$ isotopologue of isomer 2 / EQA-4-II.

			J	К' ₋₁	<i>K</i> ′ ₊₁	J‴ K‴ ₋₁	<i>K</i> ″ ₊₁	V _{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2851.6427	0.0030		
3	0	3	2	0	2	2950.1544	0.0004		
3	1	2	2	1	1	3208.8950	0.0047		
2	2	0	1	1	0	3232.1474	0.0013		
4	0	4	3	1	3	3694.8576	0.0021		
4	1	4	3	1	3	3779.0345	0.0060		
4	0	4	3	0	3	3853.5641	0.0026		
4	2	3	3	2	2	4042.0193	-0.0012		
3	2	1	2	1	1	4224.1500	-0.0040		
4	1	3	3	1	2	4239.2630	-0.0008		
4	2	2	3	2	1	4250.4951	0.0010		
3	2	2	2	1	2	4462.3662	0.0008		
5	0	5	4	1	4	4654.4274	0.0013		
5	1	5	4	1	4	4694.3897	0.0045		
5	1	5	4	0	4	4778.5568	-0.0015		
5	2	4	4	2	3	5020.6093	0.0087		
3	3	0	2	2	0	5097.7595	0.0067		
5	1	4	4	1	3	5227.7856	0.0009		
4	2	2	3	1	2	5265.7607	0.0028		
5	2	3	4	2	2	5356.7967	-0.0033		
6	0	6	5	1	5	5583.1817	-0.0184		
6	1	6	5	1	5	5600.8172	-0.0062		
6	0	6	5	0	5	5623.1510	-0.0082		
6	1	6	5	0	5	5640.7764	-0.0062		
4	2	3	3	1	3	5652.7406	-0.0057		
6	2	5	5	2	4	5980.4693	-0.0032		
6	1	5	5	1	4	6164.3179	-0.0001		
4	3	2	3	2	2	6178.5155	-0.0034		
5	2	3	4	1	3	6383.2919	-0.0021		
6	2	4	5	2	3	6436.9266	0.0034		
7	0	7	6	1	6	6494.2816	0.0053		
7	1	7	6	1	6	6501.6733	-0.0012		
7	0	7	6	0	6	6511.8977	-0.0019		
7	1	7	6	0	6	6519.3152	0.0174		
5	3	3	4	2	3	7272.6008	0.0005		

Table S34. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)$ ($H_2^{18}O$) isotopologue of isomer 2 / EQA-4-II.

			J	K'-1	<i>K</i> ′ ₊₁	J‴	<i>K″</i> -1	<i>K</i> ′′′ ₊₁	v_{obs}	v_{obs} - v_{calc}
2	0	2	1	0	1	2030.8677		-0.0011		
2	1	1	1	1	0	2248.8860		0.0039		
3	1	3	2	1	2	2843.2301		0.0003		
3	0	3	2	0	2	2944.1993		-0.0005		
3	2	2	2	2	1	3122.2836		0.0042		
3	2	1	2	2	0	3300.3804		0.0006		
3	1	2	2	1	1	3335.1483		-0.0008		
4	1	4	3	1	3	3750.3127		-0.0003		
4	0	4	3	0	3	3809.0137		-0.0004		
4	2	3	3	2	2	4122.7232		-0.0020		
4	3	1	3	3	0	4297.7147		-0.0015		
4	1	3	3	1	2	4363.0346		-0.0014		
4	2	2	3	2	1	4475.1057		0.0009		
5	1	5	4	1	4	4640.8586		0.0001		
5	0	5	4	0	4	4667.1606		-0.0012		
5	2	4	4	2	3	5092.1024		-0.0004		
5	3	3	4	3	2	5298.8775		0.0008		
5	1	4	4	1	3	5307.4300		-0.0005		
5	4	2	4	4	1	5315.3579		0.0040		
5	4	1	4	4	0	5328.1143		-0.0046		
5	3	2	4	3	1	5468.8100		-0.0015		
6	1	6	5	1	5	5521.7176		0.0013		
6	0	6	5	0	5	5531.8816		0.0002		
5	2	3	4	2	2	5615.9902		-0.0004		
6	2	5	5	2	4	6029.7883		-0.0007		
6	1	5	5	1	4	6177.5775		0.0000		
6	3	4	5	3	3	6334.0256		-0.0003		
7	1	7	6	1	6	6397.9376		0.0040		
6	4	3	5	4	2	6401.0229		-0.0008		
7	0	7	6	0	6	6401.5386		-0.0010		
6	4	2	5	4	1	6453.8082		-0.0011		
6	3	3	5	3	2	6679.8814		0.0008		
6	2	4	5	2	3	6689.6498		0.0005		
7	2	6	6	2	5	6940.6550		-0.0001		
7	1	6	6	1	5	7020.1008		-0.0021		
8	1	8	7	1	7	7272.2512		0.0070		
8	0	8	7	0	7	7273.4481		-0.0073		
7	3	5	6	3	4	7336.9540		0.0023		
7	5	3	6	5	2	7468.1063		0.0023		
7	5	2	6	5	1	7480.5446		-0.0013		
7	4	4	6	4	3	7481.7872		0.0029		
7	4	3	6	4	2	7632.4673		-0.0024		
7	2	5	6	2	4	7673.3308		0.0019		
8	2	7	7	2	6	7832.8585		0.0003		
8	1	7	7	1	6	7868.7577		-0.0028		
7	3	4	6	3	3	7873.7992		-0.0003		

 Table S35. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 3 / EQC

 4-I.

			J	K'1	<i>K</i> ′ ₊₁	J" K".	-1 K" ₊₁	V _{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2804.1150	0.0018		
3	0	3	2	0	2	2901.4570	-0.0001		
3	2	2	2	2	1	3087.4074	-0.0107		
3	2	1	2	2	0	3273.4011	0.0020		
3	1	2	2	1	1	3300.6819	0.0004		
4	1	4	3	1	3	3696.6190	0.0049		
4	0	4	3	0	3	3751.0648	-0.0022		
4	2	3	3	2	2	4073.9769	0.0014		
4	3	2	3	3	1	4197.9772	0.0046		
4	3	1	3	3	0	4260.1181	0.0047		
4	2	2	3	2	1	4437.5626	0.0020		
5	1	5	4	1	4	4572.5920	0.0008		
5	0	5	4	0	4	4596.0584	-0.0022		
5	2	4	4	2	3	5028.0360	0.0029		
5	1	4	4	1	3	5234.9518	-0.0018		
5	3	3	4	3	2	5243.3295	-0.0006		
5	4	2	4	4	1	5263.2209	-0.0046		
5	4	1	4	4	0	5277.9111	-0.0028		
5	3	2	4	3	1	5426.9247	-0.0030		
6	1	6	5	1	5	5439.2224	-0.0009		
6	0	6	5	0	5	5447.9650	-0.0014		
5	2	3	4	2	2	5562.9971	0.0007		
6	2	5	5	2	4	5949.5106	0.0003		
6	1	5	5	1	4	6085.7864	-0.0010		
6	3	4	5	3	3	6263.8793	-0.0022		
7	1	7	6	1	6	6301.5535	0.0033		
7	0	7	6	0	6	6304.5404	-0.0040		
6	4	3	5	4	2	6338.4900	0.0030		
6	4	2	5	4	1	6398.6891	0.0071		
6	2	4	5	2	3	6616.1459	0.0004		
6	3	3	5	3	2	6629.9452	-0.0022		
7	2	6	6	2	5	6844.1630	0.0019		
7	1	6	6	1	5	6914.2212	-0.0003		
8	1	8	7	1	7	7162.1875	0.0087		
8	0	8	7	0	7	7163.1432	-0.0071		
7	3	5	6	3	4	7250.1418	-0.0034		
7	2	5	6	2	4	7574.1536	0.0024		
7	4	3	6	4	2	7575.9317	-0.0035		
8	1	7	7	1	6	7751.1851	0.0000		
7	3	4	6	3	3	7807.3251	0.0008		

Table S36. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)(H_2^{16}O)$ isotopologue of isomer 3 / EQC-4-1.

			J′	K'-1	K' ₊₁	J″ F	<i>κ</i> ^{<i>''</i>} -1 <i>κ</i> ^{<i>''</i>} +1	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2800.5570	0.0010		
3	0	3	2	0	2	2893.0013	-0.0013		
3	1	2	2	1	1	3308.1454	-0.0026		
4	1	4	3	1	3	3689.1411	0.0014		
4	0	4	3	0	3	3737.8229	0.0017		
4	2	3	3	2	2	4077.1364	0.0011		
4	3	1	3	3	0	4283.0269	0.0023		
4	2	2	3	2	1	4460.6594	-0.0027		
5	1	5	4	1	4	4561.1750	0.0033		
5	2	4	4	2	3	5026.4674	-0.0003		
5	1	4	4	1	3	5221.4269	-0.0025		
5	3	3	4	3	2	5256.8571	0.0034		
5	4	1	4	4	0	5301.0060	-0.0023		
6	1	6	5	1	5	5424.3493	0.0013		
6	0	6	5	0	5	5431.2987	-0.0030		
5	3	2	4	3	1	5463.9929	0.0035		
6	2	5	5	2	4	5941.7048	-0.0035		
6	1	5	5	1	4	6061.9311	0.0009		
6	3	4	5	3	3	6274.0897	-0.0001		
7	1	7	6	1	6	6283.6914	0.0053		
7	0	7	6	0	6	6285.9373	-0.0031		
6	4	3	5	4	2	6361.8139	-0.0042		
6	2	4	5	2	3	6622.2342	-0.0002		
6	3	3	5	3	2	6674.0141	-0.0008		
7	2	6	6	2	5	6830.0957	-0.0098		
7	1	6	6	1	5	6887.7957	0.0004		
7	3	5	6	3	4	7253.5938	0.0070		
7	4	4	6	4	3	7430.9402	0.0012		
7	2	5	6	2	4	7559.0396	0.0040		
7	4	3	6	4	2	7631.8739	-0.0001		
7	3	4	6	3	3	7844.6749	-0.0012		

Table S37. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ $(H_2^{18}O)$ isotopologue of isomer 3 / EQC-4-1.

			J	К' ₋₁	<i>K</i> ′ ₊₁	J‴ K‴-1	<i>K</i> ″′ ₊₁	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2763.2203	0.0016		
3	0	3	2	0	2	2851.8209	0.0018		
3	2	2	2	2	1	3059.6489	0.0042		
3	2	1	2	2	0	3267.4990	0.0096		
3	1	2	2	1	1	3274.8585	-0.0022		
4	1	4	3	1	3	3637.8239	-0.0010		
4	0	4	3	0	3	3682.6258	-0.0015		
4	2	3	3	2	2	4030.4229	-0.0045		
4	3	2	3	3	1	4170.5218	0.0062		
4	3	1	3	3	0	4248.8178	-0.0051		
4	1	3	3	1	2	4260.8859	-0.0026		
4	2	2	3	2	1	4424.5730	0.0031		
5	1	5	4	1	4	4496.0172	0.0000		
5	0	5	4	0	4	4513.4864	-0.0023		
5	2	4	4	2	3	4964.7609	-0.0026		
5	1	4	4	1	3	5150.2658	0.0001		
5	3	3	4	3	2	5203.8326	-0.0029		
5	4	2	4	4	1	5233.9120	-0.0050		
5	4	1	4	4	0	5254.8239	0.0122		
6	1	6	5	1	5	5345.7510	0.0003		
6	0	6	5	0	5	5351.6707	-0.0017		
5	3	2	4	3	1	5425.8267	0.0060		
5	2	3	4	2	2	5529.8006	0.0005		
6	2	5	5	2	4	5864.3086	-0.0028		
6	1	5	5	1	4	5973.6909	-0.0027		
7	1	7	6	1	6	6191.9720	0.0071		
7	0	7	6	0	6	6193.8142	-0.0018		
6	3	4	5	3	3	6206.4228	-0.0003		
6	4	3	5	4	2	6302.8177	0.0010		
6	4	2	5	4	1	6386.1534	-0.0098		
6	2	4	5	2	3	6548.4982	-0.0035		
6	3	3	5	3	2	6625.9377	0.0032		
7	2	6	6	2	5	6737.3016	-0.0063		
7	1	6	6	1	5	6787.4644	0.0012		
7	3	5	6	3	4	7169.2498	0.0029		
7	4	4	6	4	3	7359.4372	-0.0028		
7	2	5	6	2	4	7459.3382	0.0056		
7	4	3	6	4	2	7581.8361	-0.0020		
8	1	7	7	1	6	7613.7385	0.0045		
7	3	4	6	3	3	7777.7163	-0.0028		

Table S38. Measured frequencies and residuals (in MHz) of the rotational transitions of the ($H_2^{18}O$) ($H_2^{18}O$) isotopologue of isomer 3 / EQC-4-1.

			J	K'-1	<i>K</i> ′ ₊₁	J‴	K''_{-1} K''_{+1}	ν_{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	3053.1971	0.0023		
3	2	1	2	2	0	3207.8016	0.0051		
2	2	1	1	1	0	3520.8559	-0.0137		
4	1	4	3	1	3	3906.2871	0.0028		
4	0	4	3	0	3	3999.9870	-0.0018		
4	2	3	3	2	2	4158.0892	-0.0053		
4	3	1	3	3	0	4221.7885	-0.0077		
4	2	2	3	2	1	4331.9141	0.0043		
4	1	3	3	1	2	4359.1786	-0.0014		
3	2	2	2	1	1	4447.8280	-0.0025		
5	0	5	4	1	4	4782.0062	0.0067		
5	1	5	4	1	4	4857.5413	-0.0035		
5	0	5	4	0	4	4921.9540	0.0012		
5	1	5	4	0	4	4997.4930	-0.0052		
5	2	4	4	2	3	5172.5561	0.0089		
5	3	3	4	3	2	5266.8095	-0.0045		
5	3	2	4	3	1	5310.9018	-0.0069		
5	1	4	4	1	3	5396.0393	0.0043		
5	2	3	4	2	2	5466.4717	-0.0105		
3	3	0	2	2	1	5631.3105	0.0044		
6	0	6	5	1	5	5761.8131	0.0030		
6	1	6	5	1	5	5799.6696	-0.0031		
6	1	6	5	0	5	5875.2097	-0.0084		
6	2	5	5	2	4	6171.6410	0.0127		
6	3	4	5	3	3	6321.3471	0.0080		
6	1	5	5	1	4	6390.8759	0.0017		
6	3	3	5	3	2	6429.0891	-0.0027		
6	2	4	5	2	3	6588.1571	0.0015		
4	3	2	3	2	1	6609.6149	0.0052		
7	0	7	6	1	6	6717.2507	0.0028		
4	3	1	3	2	2	6722.6166	-0.0026		
7	1	7	6	1	6	6735.2776	-0.0013		
7	0	7	6	0	6	6755.1058	-0.0047		
7	2	6	6	2	5	7154.4087	0.0076		
7	1	6	6	1	5	7340.7560	0.0108		
7	3	4	6	3	3	7576.3855	-0.0159		
8	0	8	7	1	7	7658.4996	0.0030		
8	1	8	7	1	7	7666.7743	-0.0040		
8	0	8	7	0	7	7676.5256	-0.0019		
7	2	5	6	2	4	7681.0088	0.0111		
8	1	8	7	0	7	7684.8027	-0.0066	_	

 Table S39. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 4 / EQC

 1-I.

 Table S40. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H218O)(H216O) isotopologue of isomer 4 / EQC-1-I.

			J	К′ ₋₁	<i>K</i> ′ ₊₁	J‴	<i>K</i> ′′′ ₋₁	<i>K</i> ′′′ ₊₁	v_{obs}	V _{obs} -V _{calc}
4	0	4	3	0	3	3938.1033		-0.0129		
5	1	5	4	1	4	4784.3129		0.0050		
5	0	5	4	0	4	4841.6301		0.0074		
5	1	4	4	1	3	5337.8347		-0.0036		
6	1	6	5	1	5	5709.5291		-0.0071		
6	0	6	5	0	5	5741.1251		-0.0132		
6	1	5	5	1	4	6308.2553		0.0063		
7	1	7	6	1	6	6628.4061		0.0048		
7	0	7	6	0	6	6644.1279		0.0083		
7	1	6	6	1	5	7231.6087		0.0255		

Table S41. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)(H_2^{18}O)$ isotopologue of isomer 4 / EQC-1-I.

			J′	K'-1	<i>K</i> ′ ₊₁	J‴	<i>K″′</i> -1	<i>K</i> ″′ ₊₁	ν_{obs}	v_{obs} - v_{calc}
4	1	3	3	1	2	4316.3003		-0.0018		
5	1	5	4	1	4	4783.4077		0.0025		
5	0	5	4	0	4	4841.3752		-0.0059		
5	1	4	4	1	3	5334.6828		0.0033		
6	0	6	5	0	5	5740.8908		-0.0079		
6	1	5	5	1	4	6305.9705		-0.0052		
7	0	7	6	0	6	6643.7831		0.0072		
7	1	6	6	1	5	7230.4154		0.0051		

			J'	K'-1	<i>K</i> ′ ₊₁	J‴ K	"-1 K" ₊₁	V _{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2700.8586	0.0016		
3	0	3	2	0	2	2814.8541	-0.0031		
3	2	2	2	2	1	2878.7850	0.0044		
3	2	1	2	2	0	2942.7043	0.0000		
3	1	2	2	1	1	3035.8060	-0.0002		
4	1	4	3	1	3	3585.0797	0.0016		
4	0	4	3	0	3	3690.8433	-0.0038		
4	3	1	3	3	0	3876.4603	0.0045		
4	2	2	3	2	1	3972.8233	0.0028		
4	1	3	3	1	2	4024.5935	-0.0021		
5	1	5	4	1	4	4459.3497	0.0011		
5	0	5	4	0	4	4539.4748	-0.0042		
5	2	4	4	2	3	4761.2456	0.0075		
5	3	3	4	3	2	4840.4548	0.0011		
5	3	2	4	3	1	4871.4155	-0.0095		
5	1	4	4	1	3	4989.1743	-0.0038		
5	2	3	4	2	2	5018.7494	0.0040		
6	1	6	5	1	5	5324.7968	0.0031		
6	0	6	5	0	5	5376.6934	-0.0041		
6	2	5	5	2	4	5684.1648	0.0064		
6	3	4	5	3	3	5811.9626	-0.0018		
6	3	3	5	3	2	5889.6567	-0.0037		
6	1	5	5	1	4	5919.9663	-0.0069		
6	2	4	5	2	3	6060.7696	0.0060		
7	0	7	6	0	6	6213.5129	-0.0015		
7	2	6	6	2	5	6592.9433	0.0098		
7	3	5	6	3	4	6777.8432	-0.0051		
7	1	6	6	1	5	6810.6216	0.0008		
7	3	4	6	3	3	6935.2549	-0.0056		
8	0	8	7	0	7	7053.4803	-0.0060		
8	2	7	7	2	6	7487.4374	0.0091		
8	1	7	7	1	6	7664.5048	-0.0006		
8	3	6	7	3	5	7734.1044	-0.0007		

 Table S42. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 5 / EQC

 2-1.

			J′	K'-1	K' ₊₁	J‴ K″.	1 K''+1	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2644.8512	0.0041		
3	0	3	2	0	2	2757.2656	0.0059		
3	2	1	2	2	0	2879.5342	-0.0006		
3	1	2	2	1	1	2971.9999	0.0018		
4	1	4	3	1	3	3511.0590	-0.0001		
4	0	4	3	0	3	3616.3423	-0.0045		
4	2	3	3	2	2	3745.5021	0.0039		
4	2	2	3	2	1	3886.8906	-0.0025		
4	1	3	3	1	2	3940.6416	-0.0008		
5	1	5	4	1	4	4367.6551	0.0018		
5	0	5	4	0	4	4448.3894	-0.0027		
5	2	4	4	2	3	4662.2483	0.0023		
5	3	3	4	3	2	4738.1774	0.0106		
5	3	2	4	3	1	4767.1335	-0.0063		
5	1	4	4	1	3	4886.3023	-0.0068		
5	2	3	4	2	2	4910.2838	0.0006		
6	1	6	5	1	5	5215.6459	-0.0002		
6	0	6	5	0	5	5268.6237	-0.0059		
6	2	5	5	2	4	5566.6531	0.0089		
6	3	4	5	3	3	5689.3808	0.0059		
6	3	3	5	3	2	5762.2690	0.0017		
6	1	5	5	1	4	5799.8229	-0.0040		
6	2	4	5	2	3	5930.9055	-0.0059		
7	1	7	6	1	6	6056.8855	-0.0025		
7	0	7	6	0	6	6088.0300	-0.0100		
7	2	6	6	2	5	6457.4469	0.0048		
7	3	5	6	3	4	6635.4141	0.0023		
7	3	4	6	3	3	6783.7980	-0.0043		
8	1	8	7	1	7	6893.3985	-0.0007		
8	0	8	7	0	7	6910.4142	-0.0041		
7	2	5	6	2	4	6933.1282	-0.0004		
8	2	7	7	2	6	7334.4401	0.0113		
8	3	6	7	3	5	7572.4486	0.0117		
8	3	5	7	3	4	7826.9159	-0.0042		
8	2	6	7	2	5	7906.8696	-0.0075		

Table S43. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)(H_2^{16}O)$ isotopologue of isomer 5 / EQC-2-I.

			J'	K'-1	K' ₊₁	J" K	"-1 K"+1	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2670.4388	-0.0065		
3	0	3	2	0	2	2783.5470	0.0043		
3	2	2	2	2	1	2855.4542	0.0111		
3	2	1	2	2	0	2927.3400	-0.0032		
3	1	2	2	1	1	3016.7308	-0.0022		
4	1	4	3	1	3	3542.7239	0.0048		
4	0	4	3	0	3	3643.4554	-0.0012		
4	2	3	3	2	2	3792.5826	-0.0015		
4	3	1	3	3	0	3850.9535	0.0048		
4	2	2	3	2	1	3956.2140	0.0038		
4	1	3	3	1	2	3995.6749	-0.0024		
5	1	5	4	1	4	4404.2981	-0.0004		
5	0	5	4	0	4	4476.7928	-0.0008		
5	2	4	4	2	3	4717.5204	0.0086		
5	3	3	4	3	2	4805.8534	-0.0009		
5	3	2	4	3	1	4843.9245	-0.0101		
5	2	3	4	2	2	4998.4653	-0.0040		
6	1	6	5	1	5	5256.7249	-0.0040		
6	0	6	5	0	5	5301.2049	0.0000		
6	2	5	5	2	4	5628.0436	0.0037		
6	3	4	5	3	3	5769.3797	0.0003		
6	1	5	5	1	4	5858.7010	-0.0005		
6	3	3	5	3	2	5863.6622	0.0050		
6	2	4	5	2	3	6031.9772	-0.0042		
7	1	7	6	1	6	6102.3596	0.0003		
7	0	7	6	0	6	6126.8470	-0.0098		
7	2	6	6	2	5	6523.0390	0.0016		
7	3	5	6	3	4	6725.5856	0.0003		
7	1	6	6	1	5	6727.1760	0.0005		
8	1	8	7	1	7	6943.5149	0.0052		

Table S44. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ $(H_2^{18}O)$ isotopologue of isomer 5 / EQC-2-1.

			J	К' ₋₁	<i>K</i> ′ ₊₁	J‴ K‴ ₋₁	K'' ₊₁	V _{obs}	V _{obs} -V _{calc}
3	1	3	2	1	2	2616.1961	-0.0030		
3	0	3	2	0	2	2727.8264	-0.0074		
3	2	2	2	2	1	2796.1933	0.0135		
3	2	1	2	2	0	2864.5282	0.0022		
3	1	2	2	1	1	2953.6811	-0.0044		
4	1	4	3	1	3	3471.2186	0.0002		
4	0	4	3	0	3	3571.9088	-0.0005		
4	2	2	3	2	1	3870.4958	0.0013		
4	1	3	3	1	2	3913.1017	-0.0036		
5	1	5	4	1	4	4315.9263	-0.0027		
5	0	5	4	0	4	4389.5311	-0.0044		
5	2	4	4	2	3	4620.8736	0.0090		
5	1	4	4	1	3	4846.0671	-0.0036		
6	0	6	5	0	5	5197.6256	-0.0021		
6	2	5	5	2	4	5513.6933	0.0061		
6	3	4	5	3	3	5648.7382	0.0110		
6	3	3	5	3	2	5736.3801	0.0060		
6	1	5	5	1	4	5742.4415	0.0046		
6	2	4	5	2	3	5903.2224	-0.0201		
7	1	7	6	1	6	5980.7898	-0.0076		
7	0	7	6	0	6	6006.4830	-0.0027		
7	2	6	6	2	5	6391.6431	0.0100		
7	1	6	6	1	5	6596.7743	0.0023		
7	3	4	6	3	3	6760.6819	0.0010		
7	2	5	6	2	4	6892.9780	-0.0055		

 Table S45. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H218O) (H218O) isotopologue of isomer 5 / EQC-2-1.

 Table S46. Measured frequencies and residuals (in MHz) of the rotational transitions of the parent species of isomer 6 / EQa

 4-I.

			J′	К' ₋₁	K' ₊₁	J‴ K‴-1	<i>K</i> ′′′ ₊₁	v_{obs}	v_{obs} - v_{calc}
2	1	1	1	0	1	2727.6721	0.0054		
3	1	3	2	1	2	2990.9915	-0.0060		
3	0	3	2	0	2	3091.9507	-0.0040		
3	2	2	2	2	1	3173.1695	0.0120		
3	2	1	2	2	0	3254.3661	-0.0069		
3	1	2	2	1	1	3328.0363	0.0004		
2	2	0	1	1	0	3407.5197	0.0189		
2	2	1	1	1	1	3499.2241	-0.0218		
4	1	4	3	1	3	3968.2099	-0.0022		
4	0	4	3	0	3	4050.8537	-0.0042		
4	2	3	3	2	2	4214.0201	-0.0048		
4	3	2	3	3	1	4267.0890	0.0027		
4	3	1	3	3	0	4282.2967	-0.0043		
4	2	2	3	2	1	4393.7928	0.0028		
4	1	3	3	1	2	4405.8475	-0.0011		
3	2	1	2	1	1	4433.2197	0.0070		
5	1	5	4	1	4	4934.4143	0.0015		
5	0	5	4	0	4	4988.1042	-0.0037		
5	2	4	4	2	3	5241.0217	-0.0002		
5	3	3	4	3	2	5339.2514	0.0100		
5	3	2	4	3	1	5389.6398	-0.0013		
5	1	4	4	1	3	5450.0423	-0.0111		
4	2	2	3	1	2	5498.9730	0.0064		
5	2	3	4	2	2	5539.4542	0.0021		
6	1	6	5	1	5	5891.8774	0.0142		
6	0	6	5	0	5	5921.5332	-0.0048		
6	2	5	5	2	4	6252.0184	-0.0020		
6	3	4	5	3	3	6406.5449	0.0002		
6	1	5	5	1	4	6449.9445	0.0040		
5	2	3	4	1	3	6632.5648	-0.0053		
6	2	4	5	2	3	6667.8121	0.0076		
7	1	7	6	1	6	6843.3645	0.0010		
7	0	7	6	0	6	6858.1491	-0.0066		
7	2	6	6	2	5	7246.4203	0.0028		
5	3	2	4	2	2	7402.4012	0.0129		
7	1	6	6	1	5	7405.9775	-0.0020		
7	3	5	6	3	4	7463.6503	-0.0029		
5	3	3	4	2	3	7616.6061	-0.0164		
7	3	4	6	3	3	7692.2714	-0.0022		
7	2	5	6	2	4	7763.8153	0.0027		

			J	K'-1	<i>K</i> ′ ₊₁	J‴ K‴-1	<i>K</i> ′′′ ₊₁	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2953.1925	0.0045		
3	0	3	2	0	2	3051.7747	-0.0022		
3	1	2	2	1	1	3284.0897	0.0048		
4	1	4	3	1	3	3918.0307	0.0065		
4	0	4	3	0	3	3998.3125	-0.0039		
4	2	3	3	2	2	4159.5009	-0.0088		
4	2	2	3	2	1	4337.1597	0.0136		
4	1	3	3	1	2	4347.4765	-0.0013		
5	1	5	4	1	4	4872.0116	-0.0090		
5	0	5	4	0	4	4923.8648	-0.0059		
5	2	3	4	2	2	5467.4423	-0.0042		
6	1	6	5	1	5	5817.4530	0.0086		
6	2	5	5	2	4	6170.9319	-0.0016		
6	1	5	5	1	4	6363.6669	0.0086		
6	2	4	5	2	3	6580.2498	-0.0071		

Table S47. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{18}O)$ ($H_2^{16}O$) isotopologue of isomer 6 / EQa-4-1.

Table S48. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ $(H_2^{18}O)$ isotopologue of isomer 6 / EQa-4-I.

			J	K'-1	<i>K</i> ′ ₊₁	J‴ K‴-1	<i>K</i> ′′′ ₊₁	ν_{obs}	V _{obs} -V _{calc}
3	1	3	2	1	2	2951.4920	0.0069		
3	0	3	2	0	2	3050.3536	-0.0025		
3	1	2	2	1	1	3311.5033	0.0049		
4	1	4	3	1	3	3911.8739	-0.0033		
4	0	4	3	0	3	3986.3911	-0.0040		
4	2	3	3	2	2	4177.0318	0.0020		
5	1	5	4	1	4	4860.1261	-0.0077		
6	1	6	5	1	5	5799.4417	0.0158		
6	2	5	5	2	4	6181.9112	-0.0112		
6	1	5	5	1	4	6365.9453	-0.0005		
6	2	4	5	2	3	6642.5991	0.0027		
7	2	6	6	2	5	7156.0732	-0.0070		
7	1	6	6	1	5	7290.8042	0.0053		
7	2	5	6	2	4	7714.2000	0.0006		

Table S49. Measured frequencies and residuals (in MHz) of the rotational transitions of the ($H_2^{18}O$) ($H_2^{18}O$) isotopologue of isomer 6 E/ Qa-4-I.

			J'	K'-1	<i>K</i> ′ ₊₁	J‴ K‴-1	<i>K</i> ′′′ ₊₁	v _{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2915.2068	-0.0099		
3	0	3	2	0	2	3011.7325	0.0038		
3	1	2	2	1	1	3267.7930	0.0038		
4	1	4	3	1	3	3863.9239	-0.0012		
4	0	4	3	0	3	3936.4427	0.0002		
4	2	3	3	2	2	4123.7025	0.0142		
4	1	3	3	1	2	4317.7972	-0.0120		
4	2	2	3	2	1	4330.8945	-0.0001		
5	2	4	4	2	3	5122.7891	-0.0004		
5	1	4	4	1	3	5326.0005	0.0022		
6	2	4	5	2	3	6554.9380	-0.0011		

Table S50. Measured frequencies and residuals (i	MHz) of the rotational transition	s of the parent species of isomer 7 /
EQA-2-I.		

			J'	K'-1	K' ₊₁	J‴ K‴ ₋₁	<i>K</i> ′′′ ₊₁	V _{obs}	v_{obs} - v_{calc}
2	1	1	1	0	1	2664.4870	0.0056		
3	1	3	2	1	2	2689.7257	-0.0006		
3	0	3	2	0	2	2809.2456	-0.0004		
3	2	2	2	2	1	2917.4929	0.0003		
3	2	1	2	2	0	3025.7391	-0.0002		
3	1	2	2	1	1	3108.4437	-0.0011		
2	2	0	1	1	0	3428.0896	-0.0122		
4	0	4	3	1	3	3447.3140	-0.0065		
2	2	1	1	1	1	3540.0743	-0.0040		
4	1	4	3	1	3	3560.2037	0.0015		
2	2	0	1	1	1	3568.9364	-0.0034		
4	0	4	3	0	3	3653.6341	0.0025		
4	1	4	3	0	3	3766.5226	0.0094		
4	2	3	3	2	2	3867.2938	-0.0032		
4	3	2	3	3	1	3938.0904	0.0069		
4	3	1	3	3	0	3960.1730	0.0028		
4	1	3	3	1	2	4101 4544	-0.0027		
4	2	2	3	2	1	4103 2298	-0.0025		
5	0	5	4	1	4	4361 3692	0.0023		
3	2	1	2	1	1	1367 9952	-0.0090		
5	1	5	7	1	1	4307.3332	0.0013		
5	0	5	4	0	-	1171 2103	-0.0015		
5	1	5	4	0	4	4474.2495	-0.0015		
2	2	1	4	1	4	4329.0119	-0.0000		
5	2	1	Z 4	1	2	4790.3170	-0.0002		
5	2	4	4	2	с С	4790.5555	0.0007		
5	5 2	с С	4	с С	2	4920.3414	0.0013		
Г	5	2	4	3	1	5000.9558	0.0001		
5	1	4	4	1	3	5048.4358	-0.0012		
5	2	5	4 F	2 1	2	5163.5247	-0.0025		
0	0	0	5	1	5	5237.3872	-0.0032		
6	1	6	5	1	5	5262.5961	-0.0059		
6	0	6	5	0	5	5292.7428	-0.0020		
6	1	6	5	0	5	5317.9540	-0.0024		
4	2	2	3	1	2	5362.8103	0.0185		
3	3	1	2	2	1	54/5.0398	-0.0079		
6	2	5	5	2	4	5708.7046	-0.0035		
4	2	3	3	1	3	5830.9701	-0.0095		
6	3	4	5	3	3	5911.3285	0.0010		
6	4	3	5	4	2	5928.7734	0.0020		
6	1	5	5	1	4	5936.6738	0.0005		
6	4	2	5	4	1	5942.8097	-0.0047		
6	3	3	5	3	2	6081.8386	-0.0119		
7	0	7	6	1	6	6090.6806	0.0203		
7	1	7	6	1	6	6101.5869	0.0007		
7	0	7	6	0	6	6115.8702	-0.0017		
4	2	2	3	1	3	6204.0452	0.0221		
6	2	4	5	2	3	6236.8222	-0.0109		
4	3	1	3	2	1	6384.3985	-0.0100		
5	2	3	4	1	3	6444.8551	-0.0067		
4	3	2	3	2	2	6495.6367	-0.0019		
5	1	4	4	0	4	6543.8011	-0.0039		
7	2	6	6	2	5	6597.4697	0.0029		

7	1	6	6	1	5	6771.7009	0.0018
7	3	5	6	3	4	6879.3607	0.0103
8	1	8	7	1	7	6936.6725	0.0035
8	0	8	7	0	7	6943.0046	-0.0187
5	3	2	4	2	2	7282.1441	0.0122
5	3	3	4	2	3	7556.8899	0.0080
8	1	7	7	1	6	7579.3905	0.0038

 Table S51. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2¹⁸O) (H2¹⁶O) isotopologue of isomer 7 / EQA-2-I.

			J′	K'-1	<i>K</i> ′ ₊₁	J'' K''-1	<i>K</i> ′′′ ₊₁	V _{obs}	v_{obs} - v_{calc}
3	0	3	2	0	2	2753.4052	-0.0097		
3	1	2	2	1	1	3042.8153	-0.0086		
4	1	4	3	1	3	3488.5501	-0.0016		
4	0	4	3	0	3	3582.5004	-0.0005		
4	2	3	3	2	2	3787.0306	0.0056		
4	3	1	3	3	0	3874.7949	0.0065		
4	2	2	3	2	1	4012.6872	0.0034		
4	1	3	3	1	2	4016.4181	0.0013		
5	1	5	4	1	4	4328.4958	-0.0001		
5	0	5	4	0	4	4387.3972	-0.0034		
5	2	4	4	2	3	4700.0244	0.0079		
5	3	3	4	3	2	4823.9963	0.0036		
5	2	3	4	2	2	5070.3444	-0.0069		
6	1	6	5	1	5	5157.9998	0.0039		
6	0	6	5	0	5	5189.4207	0.0031		
6	2	5	5	2	4	5592.8653	0.0097		
6	3	4	5	3	3	5786.7020	-0.0029		
6	1	5	5	1	4	5820.7278	-0.0076		
6	3	3	5	3	2	5946.0365	0.0053		
7	1	7	6	1	6	5980.6090	-0.0106		
7	0	7	6	0	6	5995.7616	-0.0045		
6	2	4	5	2	3	6103.5155	-0.0010		
7	2	6	6	2	5	6465.1062	0.0055		
7	1	6	6	1	5	6642.4894	0.0036		
8	0	8	7	0	7	6806.1277	-0.0026		
7	2	5	6	2	4	7094.2436	-0.0110		
8	1	7	7	1	6	7435.4480	0.0084		

			J′	K'-1	<i>K</i> ′ ₊₁	J‴ K	κ ^{''} -1 κ ^{''} +1	v_{obs}	v_{obs} - v_{calc}
3	1	3	2	1	2	2656.9559	0.0016		
3	0	3	2	0	2	2772.7014	-0.0025		
3	1	2	2	1	1	3089.0904	0.0068		
4	1	4	3	1	3	3513.7324	0.0049		
4	0	4	3	0	3	3598.9514	-0.0058		
4	2	3	3	2	2	3832.8547	0.0048		
4	3	1	3	3	0	3939.6731	-0.0038		
4	1	3	3	1	2	4068.8022	0.0056		
4	2	2	3	2	1	4091.9396	-0.0035		
5	1	5	4	1	4	4355.8547	-0.0011		
5	0	5	4	0	4	4404.9011	-0.0008		
5	2	4	4	2	3	4750.8717	0.0056		
5	3	2	4	3	1	4983.8150	0.0108		
5	1	4	4	1	3	4995.3148	-0.0080		
5	2	3	4	2	2	5164.7846	-0.0029		
6	1	6	5	1	5	5187.3879	0.0001		
6	2	5	5	2	4	5645.5881	0.0032		
6	1	5	5	1	4	5857.3998	-0.0024		
6	3	4	5	3	3	5868.0014	-0.0118		
7	1	7	6	1	6	6012.4646	-0.0022		
7	0	7	6	0	6	6023.1706	-0.0064		
6	2	4	5	2	3	6202.9052	-0.0076		
7	2	6	6	2	5	6517.4440	0.0116		
7	1	6	6	1	5	6668.2691	0.0012		
7	3	5	6	3	4	6822.7795	0.0057		
7	3	4	6	3	3	7183.0594	-0.0028		
7	2	5	6	2	4	7187.6068	0.0027		
8	1	7	7	1	6	7459.7191	-0.0001		

Table S52. Measured frequencies and residuals (in MHz) of the rotational transitions of the $(H_2^{16}O)$ $(H_2^{18}O)$ isotopologue of isomer 7 / EQA-2-I.

			J	К' ₋₁	<i>K</i> ′ ₊₁	J‴ K‴-1	<i>K</i> ′′′ ₊₁	v _{obs}	V _{obs} -V _{calc}
3	1	3	2	1	2	2604.1390	0.0025		
3	1	2	2	1	1	3024.1563	-0.0106		
4	1	4	3	1	3	3444.7291	-0.0100		
4	0	4	3	0	3	3531.1300	0.0113		
4	1	3	3	1	2	3985.4531	-0.0016		
5	1	5	4	1	4	4271.1717	-0.0009		
5	0	5	4	0	4	4322.0183	0.0019		
5	2	4	4	2	3	4654.8509	0.0087		
5	3	3	4	3	2	4791.8707	0.0109		
5	3	2	4	3	1	4873.3122	-0.0111		
5	1	4	4	1	3	4896.8981	-0.0007		
5	2	3	4	2	2	5051.9994	0.0085		
6	1	6	5	1	5	5087.1632	-0.0067		
6	2	5	5	2	4	5533.3117	0.0064		
6	1	5	5	1	4	5746.8043	-0.0037		
7	1	7	6	1	6	5896.6708	-0.0077		
7	0	7	6	0	6	5908.2599	-0.0059		
6	2	4	5	2	3	6071.3533	-0.0016		
7	2	6	6	2	5	6389.7795	0.0114		
7	1	6	6	1	5	6545.4971	-0.0017		
7	3	5	6	3	4	6682.0073	-0.0003		
8	1	8	7	1	7	6702.6812	0.0064		
7	2	5	6	2	4	7040.9602	-0.0059		
8	1	7	7	1	6	7322.4620	-0.0011		

 Table S53. Measured frequencies and residuals (in MHz) of the rotational transitions of the (H2¹⁸O) (H2¹⁸O) isotopologue of isomer 7 / EQA-2-1.