SUPPLEMENTARY INFORMATION

Y©B₈C₄ Cluster: A Boron-Carbon Molecular Wheel with Dodecacoordination Number in Plane

Ying-Jin Wang,*a Lin-Yan Feng, Miao Yan, Chang-Qing Miao, and

Hua-Jin Zhai*b

^aDepartment of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China

^bNanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

*E-mail: yingjinwang@sxu.edu.cn; hj.zhai@sxu.edu.cn

Supplementary Information

- **Table S1.** Cartesian coordinates for the D_{4h} (²B_{1u}) global-minimum (GM) structure of Y©B₈C₄ cluster at PBE0/B,C/6-311+G*/Y/Stuttgart'97 level.
- Alternative optimized Low-lying isomers of Y[©]B₈C₄ cluster. All energies are in Figure S1. eV. The relative the energies are shown at single-point CCSD(T)/Y/Stuttgart'97/B,C/6-311+G*//PBE0/Y/Stuttgart'97/B,C/6-311+G* level (for top ten), at PBE0/Y/Stuttgart'97/B,C/6-311+G* level (in square brackets), and at B3LYP/Y/Stuttgart'97/B.C/6-311+G* level (in curly brackets), respectively. The relative energies at both PBE0 and B3LYP levels are corrected with the zero-point energies (ZPEs).

- Figure S2. The top five isomers of (a) $Y @B_8C_4^+$ and (b) $Y @B_8C_4^-$ clusters at PBE0/Y/Stuttgart'97/B,C/6-311+G* level. The relative energies (in eV) are corrected with ZPEs.
- Figure S3. Calculated bond distances (in Å) at PBE0/Y/Stuttgart'97/B,C/6-311+G* level for
 (a) D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster, along with their (b) Wiberg bond indices
 (WBIs) and (c) natural atomic charges in |e| from the natural bond orbital (NBO) analyses at PBE0/Y/Stuttgart'97/B,C/6-311G* level.
- Figure S4. Occupied canonical molecular orbitals (CMOs) of the D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster. (a) Twelve σ CMOs for two-center two-electron (2c-2e) B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in Y©B₈C₄. (c) Five delocalized π CMOs in Y©B₈C₄, the SOMO represents single occupation.
- **Figure S5.** The CMOs energy diagram of delocalized σ/π frameworks in D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster.
- **Figure S6.** The energy cycle of D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster, along with the isomerization energy of B₈C₄ ring, bond dissociation energy (BDE) and inherent interaction energy between the central Y and B₈C₄ ring (in kcal mol⁻¹).

Figure S1. Alternative optimized Low-lying isomers of Y©B₈C₄ cluster. All energies are in eV. The relative energies shown at the single-point are CCSD(T)/Y/Stuttgart'97/B,C/6-311+G*//PBE0/Y/Stuttgart'97/B,C/6-311+G* level (for top ten), at PBE0/Y/Stuttgart'97/B,C/6-311+G* level (in square brackets), and at B3LYP/Y/Stuttgart'97/B,C/6-311+G* level (in curly brackets), respectively. The relative energies at both PBE0 and B3LYP levels are corrected with the zero-point energies (ZPEs).

Figure S2. The top five isomers of $Y @B_8C_4^+$ (a) and $Y @B_8C_4^-$ (b) clusters at PBE0/Y/Stuttgart'97/B,C/6-311+G* level. The relative energies (in eV) are corrected with ZPEs.

Figure S3. Calculated bond distances (in Å) at PBE0/Y/Stuttgart'97/B,C/6-311+G* level for
(a) D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster, along with their (b) Wiberg bond indices
(WBIs) and (c) natural atomic charges in |e| from the natural bond orbital (NBO) analyses at PBE0/Y/Stuttgart'97/B,C/6-311G* level.

Figure S4. Occupied canonical molecular orbitals (CMOs) of the D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster. (a) Twelve σ CMOs for two-center two-electron (2c-2e) B–C/B–B Lewis σ bonds in B₈C₄ ring. (b) Five delocalized σ CMOs in Y©B₈C₄. (c) Five delocalized π CMOs in Y©B₈C₄, the SOMO represents single occupation.

Figure S5. The CMOs energy diagram of delocalized σ/π frameworks in D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster.

Figure S6. The energy cycle of D_{4h} (²B_{1u}) GM Y©B₈C₄ cluster, along with the isomerization energy of B₈C₄ ring, bond dissociation energy (BDE) and inherent interaction energy between the central Y and B₈C₄ ring (in kcal mol⁻¹).

Table S1. Cartesian coordinates for the D_{4h} (${}^{2}B_{1u}$) global-minimum (GM) structure of
Y ${}^{\odot}B_{8}C_{4}$ cluster at PBE0/B,C/6-311+G*/Y/Stuttgart'97 level.

Y©B₈C₄ GM (*D*_{4h}, ²B_{1u})

С	0.00000000	2.71839600	0.00000000
С	0.00000000	-2.71839600	0.00000000
С	2.71839600	0.00000000	0.00000000
С	-2.71839600	0.00000000	0.00000000
В	2.44549100	1.35592000	0.00000000
В	1.35592000	2.44549100	0.00000000
В	-1.35592000	2.44549100	0.00000000
В	-2.44549100	1.35592000	0.00000000
В	-2.44549100	-1.35592000	0.00000000
В	-1.35592000	-2.44549100	0.00000000
В	1.35592000	-2.44549100	0.00000000
В	2.44549100	-1.35592000	0.00000000
Y	0.00000000	0.00000000	0.00000000