Hierarchical manganese valence gradient MnO2 via phosphorus doping for cathode materials

with improved stability

Limin Zhao*, Zejuan Ni, Bo Ge, Chuanyu Jin, Hui Zhao, Wenzhi Li

School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR

China

*Corresponding authors. E-mail: <u>zhaolimin@lcu.edu.cn</u>

Table of Contents:

- Fig.S1 EDS elemental maps for MnO₂.
- Fig.S2 EDS elemental maps for P-MnO_x

Fig.S3 High-resolution Mn 2p (a) and O 1s (b) X-ray photoelectron spectroscopy of MnO₂.

Fig.S4 High-resolution Mn 3s X-ray photoelectron spectroscopy of MnO₂ and P-MnO_x.

Fig.S5 High-resolution P 2p X-ray photoelectron spectroscopy of P-MnO_x.

Fig.S6 Pore distributions of MnO₂ and P-MnO_x.

Fig.S7 (a) CV profiles of MnO₂ at various scan rates and (b) lgI vs lgv patterns for MnO₂.

Fig.S8 Cycle lifetime of MnO₂ and P-MnO_x.

Fig.S9 The CV curve of MnO_2 at 0.1 mV/s.

Fig.S10 The CV curve of MnO₂ at different scan rates.

Fig.S11 The GCD curves of MnO₂ at different cycle number.

Fig.S12 The constructed structure of MnO₂ (left: lateral view, right: top view).

Fig.S13 The constructed structure of P-MnO_x (left: lateral view, right: top view).

Table S1 The capacity performance of some reported cathode materials.

Fig. S2 EDS elemental maps for $P-MnO_x$

Fig. S3 high-resolution Mn 2p (a) and O 1s (b) X-ray photoelectron spectroscopy of MnO_2

Fig. S4 high-resolution Mn 3s X-ray photoelectron spectroscopy of MnO_2 and P-MnO_x

Fig. S5 high-resolution P 2p X-ray photoelectron spectroscopy of P-MnO $_x$

Fig. S6 pore distributions of MnO_2 and $P\mbox{-}MnO_x$

Fig. S7 (a) CV profiles of $\rm MnO_2$ at various scan rates and (b) lgI vs lgv patterns for $\rm MnO_2$

Fig. S8 Cycle lifetime of MnO_2 and P-MnO_x

Fig. S9 the CV curve of MnO_2 at 0.1 mV/s

Fig. S10 the CV curve of MnO_2 at different scan rates

Fig. S11 the GCD curves of MnO_2 at different cycle number

Fig. S12 the constructed structure of MnO_2 (left: lateral view, right: top view)

Fig. S13 the constructed structure of P-MnO_x (left: lateral view, right: top view)

Cathode	Capacity (mAh g ⁻¹)	Reference
VO ₂	276 mAh g ⁻¹ (0.2 A g ⁻¹)	[1]
α -Mn ₂ O ₃ cathode	148 mAh g ⁻¹ (0.1 A g ⁻¹)	[2]
Na _{1.1} V ₃ O _{7.9} nanoribbons/graphene	84.8 mAh g ⁻¹ (1 A g ⁻¹)	[3]
Ni-PTA-Mn	139 mAh g^{-1} (0.1 A g^{-1})	[4]
β-MnO ₂	110 mAh g ⁻¹ (0.2 A g ⁻¹)	[5]
This work	155 mAh/g (0.1 A g ⁻¹)	

Table S1 The capacity performance of some reported cathode materials

[1] S. Zuo, J. Liu, W. He, S. Osman, Z. Liu, X. Xu, J. Shen, W. Jiang, J. Liu, Z. Zeng,

M. Zhu, The Journal of Physical Chemical Letter, 2021, 12, 7076-7084.

[2] B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, *Electrochimica Acta*, 2017, 229, 422-428.

[3] Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Energy Storage Materials,

2018, 13, 168-174.

[4] C. Li, C. Zheng, H. Jiang, S. Bai, J. Jia, Journal of Alloys and Compounds, 2021, 882, 160587.

[5] W. Liu, X. Zhang, Y. Huang, B. Jiang, Z. Chang, C. Xu, F. Kang, *Journal of Energy Chemistry*, 2021, 56, 365-373.