Supporting information

Light Trapping by Porous TiO₂ Hollow Hemispheres for High Efficient Photoelectrochemical Water Splitting

Yuanxing Fang^{1,2}, Ronan Hodgson¹, Wei Cheat Lee¹, Huyen Le¹, Hon Wing Boaz Chan¹,

Hassan M. Hassan³, Ibrahim H. Alsohaimi³, Giacomo E. Canciani^{1,4}, Rong Qian⁵, and Qiao

Chen¹*

- ¹ Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
- ² State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- ³ Chemistry Department, College of Science, Jouf University, Sakka, P.O. Box 2014, Saudi Arabia
- ⁴ Imec, Kapeldreef 75, 3001 Leuven, Belgium
- ⁵ National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, P. R. China

*Corresponding author. Email address: qiao.chen@sussex.ac.uk

Figure S1. The average outer diameter of the HHSs as a function of (a) the orifice inner size,(b) the distance between the end of the orifice and the collector, and (c) the applied voltage.

Figure S2. The morphology of as-prepared TTIP/HHSs prepared by various TTIP concentrations of (a) 4 wt% and (b) 6 wt%.

Figure S3. Thermal degradation of the PMMA/TTIP HHSs film using FITR-ATR at room temperature, 200 °C, 300 °C, and 400 °C.

Figure S4. (a) N_2 adsorption-desorption isotherms and (b) their BJH pore size distribution plots of TiO₂ HHS.

Figure S5. Nyquist plot of TiO₂ HHS and P25.

Figure S6. (a) The cross-sectional view of the TiO_2 HHSs film for the photoreaction studies. (b) The photocurrent density of the TiO_2 HHSs film after calcination at 400 °C, 650 °C, and 800 °C and (c) the corresponding photoconversion efficiency.