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1. Frank Model of Figure 1

Hypothetical rate constants used:

k1 = 10-3 lmol-1s-1; k-1 = 10-6 s-1; k2 = 10-2 l2mol-2s-1; k-2 = 10-5 lmol-1s-1; k3 = 10-2 lmol-1s-1; k-3 = 10-6 s-1

Rate equations (100% enantioselectivity assumed, i.e. only homochiral autocatalytic steps are 
considered):

(1) d[R]/dt = k1[A]B]  – k-1[R] + k2[R][A][B] – k-2[R]2 + k3[R][S] – k-3[RS] 

(2) d[S]/dt = k1[A]B]  – k-1[S] + k2[S][A][B] – k-2[S]2 + k3[R][S] – k-3[RS]

(3) d[RS]/dt = k3[R][S] – k-3[RS] 

Particle number conservation (i.e. closed system conditions assumed): 

[A] = (101/100 )*[A]0 – [R] – [S] – 2[RS]; 

[B] = (101/100)*[B]0 – [R] – [S] – 2[RS]

Initial chiral bias: [R]0 = 0.01 moll-1; [A]0 = [B]0 = 1 moll-1

All other initial concentrations are zero.
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2. Proof of Impossibility of Chiral Oscillations in the Frank Model of Scheme 1 
due to existence of a Kinetic Potential: 

The Frank mechanism (Scheme 1) in a simplified form with suppressed reaction partner B, consists of the 
following (reversible) steps:

A + R   R + R 

A + S   S + S

R + S  P 

With prochiral reactant A and optically inactive product P. R and S are enantiomers. Concentration [A] is 
assumed to be clamped (implying an open system). When a kinetic potential is present, state variables 
(like concentrations) cannot assume the same state twice, precluding chiral oscillations.

When chiral oscillations occur, [R] grows at the cost of [S] and – at turns - vice versa, which is possible 
only, in principle, at a non-equilibrium steady state. Please note, that in SMSB, [R] grows instead 
monotonously at the cost of [S] - or vice versa - until one species becomes extinct. 

Reaction velocities are (rate constants are suppressed):

(1) V1 = [A][R] – [R]2, V2 = [A][S] – [S]2, V3 = [R][S] – [P]

And affinities (equilibrium constants and general gas constant are suppressed): 

(2)  A1 = ln ([A]/[R]), dA1 = - d[R]/[R]; A2 = ln ([A]/[S]), dA2 = - d[S]/[S]; A3 = ln ([R][S]/[P]), 
dA3 = d[R]/[R] + d[S]/[S]

Then it follows for the differential of the rate of internal entropy production with respect to the 
generalized forces (see for definitions SI section 6):

(3) dxб = Σr vr dAr = ([A][R] – [R]2)*(-d[R]/[R]) + ([A][S] – [S]2)*(-d[S]/[S]) + ([R][S] – 
[P])*(d[R]/[R] + d[S]/[S]) = - ([A] – [R])d[R] – ([A] – [S])d[S] + ([S] – [P]/[R])d[R] + ([R] – [P]/[S])d[S] 
= 
([S] – [P]/[R] – [A] + [R])d[R] + ([R] – [P]/[S] – [A] + [S])d[S]

With the abbreviations

∂xб/∂[R] = c1 and ∂xб/∂[S] = c2

this yields:

∂2
xб/∂[R]∂[S] =  ∂/∂[S] (c1) = ∂/∂[R] (c2) = ∂2

xб/∂[S]∂[R] = 1

Therefore we conclude (see SI section 6 for details), that a kinetic potential exists for the Frank model 
(with respect to the chemical composition as state function) and that, hence, chiral oscillations are 
precluded in this model (in contrast to, e.g., oscillations of species’ populations in Lotka-Volterra type 
predator-prey models).S1



3. Cross-catalytic Model of Figure 2

Hypothetical rate constants used:   

k1 = 10-3 lmol-1s-1; k-1 = 10-6 s-1; k2 = 10-3 l2mol-2s-1; k-2 = 10-6 lmol-1s-1; k3 = 10-1 l2mol-2s-1; k-3 = 10-5 lmol-1s-1; 

k4 = 10-3 lmol-1s-1; k-4 = 10-6 s-1; k5 = 10-1 l2mol-2s-1; k-5 = 10-5 lmol-1s-1; k6 = 10-3 l2mol-2s-1; k-6 = 10-6 lmol-1s-1

Rate equations (100% enantioselectivity assumed, i.e. only homochiral autocatalytic steps are 
considered):

(1) d[R]/dt = k1[A]B]  – k-1[R] + k2[R][A][B] – k-2[R]2 + k3[RR][A][B] – k-3[RR][R] 

(2) d[S]/dt = k1[A]B]  – k-1[S] + k2[S][A][B] – k-2[S]2 + k3[SS][A][B] – k-3[SS][S]

(3) d[RR]/dt = k4[A][R] – k-4[RR] + k5[R]2[A] – k-5[R][RR] + k6[RR][R][A] – k-6[RR]2

(4) d[SS]/dt = k4[A][S] – k-4[SS] + k5[S]2[A] – k-5[S][SS] + k6[SS][S][A] – k-6[SS]2

Please note that the background reaction (not included in Scheme 2) is necessary to start autocatalysis. 
Eqs (1)-(4) represent an “explicit” cross-catalysis. Formation of achiral RS meso compound in 
heterochiral reactant autocatalytic reactions (Scheme 2) and which could also result from double 
addition is, for simplicity, not taken into account here, because we want to focus on the cross-catalysis 
itself. 

Particle number conservation:

[A] = (101/100 )*[A]0 – [R] – [S] – 2[RR] -2[SS]; 

[B] = (101/100)*[B]0 – [R] – [S] – [RR] - [SS]

Initial chiral bias: [R]0 = 0.01 moll-1; [A]0 = [B]0 = 1 moll-1

All other initial concentrations are zero.



4. Kinetic Rate Equations with Boundary and Initial Conditions for Complete 
Model of Self-Catalyzed Aldol Reaction, Conforming to Scheme 4  

Eqs.

(1) d[R]/dt = k1[A]B]  – k-1[R] + k2[R][A][B] – k-2[R]2 + k3[S][A][B] – k-3[R][S] + k4[RR][A][B] – k-4[RR][R] + 
k5[SS][A][B] – k-5[SS][R] + (k6 + k7)[RS][A][B] – (k-6 + k-7)[RS][R]

(2) d[S]/dt = k1[A]B]  – k-1[S] + k2[S][A][B] – k-2[S]2 + k3[R][A][B] – k-3[R][S] + k4[SS][A][B] – k-4[SS][S] + 
k5[RR][A][B] – k-5[RR][S] + (k6 + k7)[RS][A][B] – (k-6 + k-7)[RS][S]

(3) d[RR]/dt = k8[A][R] – k-8[RR] + k9[RR][A][R] – k-9[RR]2 + k10[R]2[A] – k-10[R][RR] + k11[S][R][A] – k-

11[S][RR] + k12[SS][R][A] – k-12[SS][RR] + (k13 + k14)[RS][R][A] – (k-13 + k-14)[RS][RR]
(4) d[SS]/dt = k8[A][S] – k-8[SS] + k9[SS][A][S] – k-9[SS]2 + k10[S]2[A] – k-10[S][SS] + k11[S][R][A] – k-

11[R][SS] + k12[RR][S][A] – k-12[SS][RR] + (k13 + k14)[RS][S][A] – (k-13 + k-14)[RS][SS]
(5) d[RS]/dt = k15[A]([R] + [S]) – 2k-15[RS] + k16[A]([R]2 + [S]2) – k-16[RS]([R] + [S]) + 2k17[R][S][A] – k-

17[RS]([R] + [S]) + k18[RR][R]A] + k18[SS][S][A] – k-18[RR][RS] – k-18[SS][RS] + 2k19[RS][R][A] – 2k-

19[RS]2 + k20[RR][S][A] + k20[SS][R][A] – k-20[RS]([RR] + [SS]) + 2k21[RS][S][A] – 2k-21[RS]2

(6) d[RS]/dt = k22[R][S] – k-22[RS]
(7) d[RR]/dt = k23[R]2 – k-23[RR]
(8) d[SS]/dt = k23[S]2 – k-23[SS]

 

Because we assume a closed system, particle number conservation has to be observed as boundary 
condition:

(9) [A] = [A]0 - [R] - [S] - 2([RR] +[SS] + [RS] + [RS] + [RR] + [SS])

(10) [B] = [B]0 - [R] - [S] - [RR] - [SS] - [RS] – 2([RS] + [RR] + [SS])

Initial conditions are: [A]0 variable, but ≥ 1 moll-1, [B]0 = 1 moll-1, [S]0 = 0 or 10-n moll-1 (n = 2, 3 or 4).

Initial chiral bias is introduced, as if it had formed instantaneously from the reactants before reaction 
start:

E.g. for [S]0 = 10-2 moll-1: [B]’0 = 1.01 * [B]0  , [A]’0 = 1.01 * [A]0

When A is in excess, [A]0 is set to, e.g., hypothetical concentration of 10 moll-1 for a 10:1 ratio of A to B



5. Calculated Kinetic Rate Constants of Scheme 4 for Complete Model of Self-
Catalyzed Aldol Reaction:

k1 = 6.03*10-3 lmol-1s-1, k-1 = 1.55*10-6 s-1,

k2 = 3.07*10-3 l2mol-2s-1, k-2 = 7.92*10-7 lmol-1s-1,

k3 = 2.32*10-2 l2mol-2s-1, k-3 = 5.99*10-6 lmol-1s-1,

k4 = 1.75*10-4 l2mol-2s-1, k-4 = 4.50*10-8 lmol-1s-1,

k5 = 2.59*10-3 l2mol-2s-1, k-5 = 6.69*10-7 lmol-1s-1,

k6 = 1.66*10-2 l2mol-2s-1, k-6 = 3.61*10-6 lmol-1s-1,

k7 = 7.92*10-7 l2mol-2s-1, k-7 = 1.73*10-10 lmol-1s-1,

k8 = 2.73*10-5 lmol-1s-1, k-8 = 1.31*10-6 s-1,

k9 = 5.36*10-5 l2mol-2s-1, k-9 = 2.58*10-6 lmol-1s-1,

k10 = 8.39*10-6 l2mol-2s-1, k-10 = 3.41*10-7 lmol-1s-1,

k11 = 8.34*10-9 l2mol-2s-1, k-11 = 3.39*10-10 lmol-1s-1,

k12 = 2.90*10-4 l2mol-2s-1, k-12 = 1.39*10-5 lmol-1s-1,

k13 = 1.47*10-7 l2mol-2s-1, k-13 = 7.05*10-9 lmol-1s-1,

k14 = 1.24*10-7 l2mol-2s-1, k-14 = 5.95*10-9 lmol-1s-1,

k15 = 7.09*10-6 l2mol-2s-1, k-15 = 1.47*10-7 lmol-1s-1,

k16 = 2.72*10-8 l2mol-2s-1, k-16 = 5.62*10-10 lmol-1s-1,

k17 = 1.75*10-4 l2mol-2s-1, k-17 = 3.61*10-6 lmol-1s-1,

k18 = 1.94*10-8 l2mol-2s-1, k-18 = 4.01*10-10 lmol-1s-1,

k19 = 8.39*10-6 l2mol-2s-1, k-19 = 1.74*10-7 lmol-1s-1,

k20 = 1.11*10-6 l2mol-2s-1, k-20 = 2.29*10-9 lmol-1s-1,

k21 = 2.86*10-10 l2mol-2s-1, k-21 = 5.92*10-12 lmol-1s-1,

k22 = 6.77*100 lmol-1s-1, k-22 = 1.00*10-1 s-1,

k23 = 2.60*10-1 lmol-1s-1, k-23 = 1.00*100 s-1,



6. Proof of Absence of a Kinetic Potential in Terms of the Thermodynamics of 
Non-linear Irreversible Processes for Cross-Catalytic Model of Scheme 2:   

Chemical potential μ for component with index i in a reaction mixture (with all other molar quantities nj 
fixed) is defined as:S2 

(1) μi = (∂G/∂ni)S,V,nj ≠ ni

(with Gibbs free energy G, molar quantity n, fixed Entropy S and fixed volume V)

Generalized forces Xr for reaction with index r and absolute temperature T is: 

(2) Xr = -Ar/T  

With chemical affinity at non-equilibrium for an ideal mixture

(3) Ar = RT*ln(Kr*∏ci
νi) = -  (∂G/∂ξr)p,T    

(with general gas constant R, equilibrium constant K, concentration of component c, respective 
stoichiometric coefficient νi, De Donder reaction variable ξ, pressure p). Hence: Ar dξir = μi νi dξ ir  = μi dnir 

Entropy production б in irreversible thermodynamics is given by:S3 

(4) б = dSi/dt = Σj XjJj 

(with change in internal entropy Si, generalized flows J). 

б is zero for a chemical equilibrium, because the argument in the logarithm in (3) becomes unity, and all 
Xj = 0, even if Jj ≠ 0.

The differential for б with respect to generalized forces in the general case of non-linear reactions 
becomes: 

(5) dxб = Σj JjdXj

The non-linearity goes back to the reactant (or indirect product) autocatalytic reactions in Scheme 2. 
Please note, that one cannot generally assume here that Jj = Lji * Xi, with a symmetric matrix of 
phenomenological coefficients Lji = Lij, as for irreversible thermodynamics of linear processes. If 1-form 
(5) is not a total (or exact) differential, there is, in general, no kinetic potential for the reaction network, 
which means that the integral of (5) becomes path-dependent and chemical oscillations become 
possible.

Generalized flows in a chemical reaction are the reaction velocities vr. Because of (2) and (3), (5) 
becomes 

(6) T*dxб = Σr vr dAr

For a total (or exact) differential to hold, is dxб = Σr (∂xб/∂Ar)*dAr

Because dAr = RT* dln(∏ci
νi), and when we assume conditions of a flow reactor with clamped 

concentrations cj (here: the reactant concentrations [A] and [B]), the condition for dxб to be a total 
differential becomes because of (3):



(7) dxб = Σi (∂xб/∂ci)cj * νi dci  for all variable concentrations ci ≠ cj

The same is true when no concentrations are clamped, but the following derivation would become more 
involved. Please note that, exchange entropy flows over the open system boundary due to clamping are 
not taken into account. Hence, dxб does only include the internal entropy production rate going back to 
chemical reactions in the system. In addition, and under non-isothermal conditions, entropy export may 
also occur, of course, as in a closed system (e.g., when environment temperature is lower than system 
temperature and exothermic reactions run inside the system).

In the following, all constants are suppressed (namely rate constants ki, equilibrium constants Kr, and the 
general gas constant R). We assume the cross-catalytic reaction network of Scheme 2 to hold.

Equation (7) holds only when all mixed partial derivatives (∂2
xб/∂ci∂cj) for every given (ci, cj) pair 

commute:

(8) ∂2
xб/∂ci∂cj =  ∂2

xб/∂cj∂ci

In order to show that there is, in general, no kinetic potential for the reaction network of Scheme 2, it 
has to be shown at least for one (ci, cj) pair that (8) does not hold, here taken to be the enantiomer 
concentrations of single-aldol addition product [R] and [S].  

Reaction velocities are:

(9) V1 = [A][B][RR] – [R][RR], V2 = [A][B][SS] – [S][SS], V3 = [R]2[A] – [RR][R], V4 = [S]2[A] – 
[SS][S], V5 = [R][A][S] – [RS][S], V6 = [R][A][S] – [RS][R]

And affinities: 

(10)  A1 = ln ([A][B]/[R]), dA1 = - d[R]/[R]; A2 = ln ([A][B]/[S]), dA2 = - d[S]/[S]; A3 = ln 
([A][R]/[RR]), dA3 = - d[R]/[R]-d[RR]/[RR]; A4 = ln ([A][S]/[SS]), dA4 = - d[S]/[S]-d[SS]/[SS]; A5 = ln 
([A][R]/[RS]), dA5 = - d[R]/[R]-d[RS]/[RS]; A6 = ln ([A][S]/[RS]), dA6 = - d[S]/[S]-d[RS]/[RS]

After insertion of (9) and (10) in (6), addition and re-ordering of terms, coefficients in (7) become

cR = ∂xб/∂[R] = [R][A] – [A][B][RR]/[R] + [A][S] – [RS][S]/[R] and

cS = ∂xб/∂[S] = [S][A] – [A][B][SS]/[S] + [A][R] – [RS][R]/[S]

and, hence:

(11)  ∂2
xб/∂[R]∂[S] =  [A] – [RS]/[R] ≠ ∂2

xб/∂[S]∂[R] = [A] – [RS]/[S] 

Therefore we conclude that, in general, no kinetic potential exists for the cross-catalysis network shown 
in Scheme 2. Please note, that at thermodynamic equilibrium, because of [R] = [S], ∂2

xб/∂[R]∂[S] = 
∂2

xб/∂[S]∂[R] and chemical oscillations are hence, of course, impossible. 

When not all vr in Σr vr = 0 vanish individually, a non-equilibrium steady state (NESS) is assumed. When we 
assume that the generalized flows are constant in time (i.e. dJj = 0), the relationship

(12)  dxб/dt = Σj Jj (dXj/dt) ≤ 0

holds, and which is called “evolution criterion”. It should not be confused with the “principle of minimal 
entropy production”,S4 which holds for discrete NESS close to equilibrium and is based on linear 



irreversible processes and which refers to the change of б(Ji,Xj) under variation of forces Xj, and can be 
considered a generalization of Le Chatelier’s principle to non-equilibrium steady states. Please note that 
flows are dependent on forces. 

For linear systems, the more strict dб/dt ≤ 0 holds, rather than (12), i.e. a linear transient system must 
develop in time either towards an equilibrium state or to a local minimum of entropy production. 
Racemic states must therefore be always local minima of entropy production. But the converse is not 
true. Non-racemic states may therefore also be located at local minima of б, as well, but cannot develop 
in linear reaction networks. The Brussels school assumed a wide applicability of the minimum entropy 
production principle. However, Keizer and Fox have shown in 1974, that in autocatalytic systems, the 
principle is not generally valid far from equilibrium.S5

Only for non-linear systems (e.g. that of scheme 2), (12) may be interpreted instead as resulting from a 
hypothetical “principle of maximum entropy production”, which means that at least some NESS, once 
attained, could be characterized by a local maximum, rather than a minimum, in entropy production 
б(Jj,Xj). It is therefore conceivable that transient non-linear systems may be driven towards such a - 
kinetically stable - local maximum of entropy production (in apparent contradiction to the evolution 
criterion), provided that enough energy is available. At such a state, any variation of forces Xj, must 
result in a decrease in entropy production rate. The physics behind the evolvement of transient states of 
non-linear systems towards such local maxima of б, has not been established yet, though. There is, 
however, some empirical evidence for such a maximum entropy production principle (but not yet with 
respect to time development of transient states), at least for non-discrete NESS outside of the chemistry 
domain.S6

For example, the earth’s biosphere, which is an open non-linear driven system that receives energy 
supply from the sun, the molten core of the planet and the heat released in radioactive decay of 
elements in the earth’s crust, is assumed to constantly develop towards a maximum-б non-equilibrium 
state.S7

The condition of constant flows is no longer valid when we are in a transient state or depart too far from 
the NESS, i.e. we assume here that the entropy production can be developed around the NESS as a 
Taylor expansion. 



7.  Effect of Asymmetric Reactant Autocatalysis (of Scheme 2 and 4) on 
Enantiomeric Purity and Reactant Cross-Catalysis

6.1. Asymmetric Reactant Autocatalysis

We consider the following double-addition reaction steps with enantiomers R and S (see, e.g., processes 
with rate constants k10, k11, k16 and k17 in Scheme 4), as they occur in Scheme 2 or 4 (catalytically active 
species are in italics, respectively):

(1) A + R + R  RR + R , (2) A + R + R  RS + R, (3) A + S + S  RS + S, (4) A + S + S  SS + S 

and (5) A + R + S  RS + S, (6) A + S + R  RS + R, (7) A + R + S  RR + S, (8) A + S + R  SS + R,

Steps (1) – (4) are homochiral, because reactant and catalyst possess the same absolute configuration, 
steps (5) - (8) are heterochiral. 

Please note, that such directly reactant autocatalytic processes are relevant here only in double-
addition steps, i.e. when either (already formed) single-aldol product R (or S) is also reactant (because 
we consider only chiral matter to exert a catalytic effect herein). 

For achiral “reactant autocatalysts”, above reaction equations simplify; and in this case, also single-
addition steps could be taken into account. For instance, hypothetical exergonic reaction 2 R  A + R 
(component B is suppressed for clarity) is a spontaneous reactant (auto)catalyzed (= promoted) decay 
process of substrate R. Therefore, considerations as outlined here, can principally also be applied to 
other chemical processes as well, of course. 

We assume in the following (without restriction of generality) that all these above steps (1) – (8) are 
even faster than any of the background reactions (9) – (12) (i.e catalysis is positive, the presence of an 
additional R or S molecule in the transition state structure is assumed to lower the activation barrier for 
the net process):  

(9) A + R  RR, (10) A + S  SS , (11) A + S  RS, (12) A + R  RS

Note, that only the homochiral reactant autocatalytic steps, (1) - (4), are self-decelerating, i.e. where 
reactant and catalyst have the same absolute configuration and the catalyst facilitates its own 
consumption. In contrast, rate does NOT change in heterochiral steps (5) - (8), because R (reactant) and S 
(catalyst), or vice versa, are not the same species! 

As R and S are enantiomers, we consider first their stereoinductive effect, i.e. when they act as chirality 
inducers in the activated complex as in asymmetric catalysis (i.e. here: “asymmetric autocatalysis”). This 
results, e.g., in a certain positive or negative enantioselectivity for (1) and (2), depending on whether (1) 
is faster than (2), or vice versa, respectively. Please note that the difference in reaction velocity of (1) and 
(2) only depends on the effect of R (catalyst) on the activation barriers in these steps, as their left-hand 
sides are equal.



We assume in this work that no double-addition products are included in definition of ee value (e.g., to 
take into account in a single order parameter the whole chiral matter produced or consumed), as in 

(13) eetotal = [(R + RR) – (S + SS)] / (R + RR + S + SS)

Moreover, we consider only ee value for single-addition products: ees = ee = R – S / (R + S) and not an 
additional one for double-addition products as well, i.e. eed = (RR – SS) /(RR + SS). Hence, ee (i.e. ees) 
value will not increase, but rather decrease (i.e. constitute a chiral depletion), through homochiral 
reactant autocatalytic steps (1)-(4), because rate of consumption of R (or S) is always proportional to [R]2 
(or [S]2), respectively: d[R]/d[S] = - ([R]/[S])2, cf. positivity of differential quotient in Blackmond-Brown 
mechanism (Scheme 1). This means, that any possibly existing chiral amplification mechanism is actually 
impeded (!)  by such (non-linear and spontaneous) reaction steps: the higher the ee value is, the faster it 
erodes through such processes as (1) – (4). 

Now we consider heterochiral reactant (asymmetric) autocatalytic steps (5) - (8), which are not self-
decelerating in contrast to their homochiral variants. Meso-form RS is optically inactive. At first glance, 
such a process, like (5), is reminiscent of a Frank-type mutual inhibition. However, because reaction 
velocity depends on product [R]*[S] with R (reactant) and S (catalyst), or vice versa in the mirror image 
process, any potential increase in ee value is cancelled out by the mirror image process (note also that 
product [R]*[S] is maximal for the racemic composition). There is no net effect on the ee value. 

We conclude, that reactant autocatalytic processes cannot enhance the enantiomeric excess of a 
reaction mixture, when reactant/catalyst is a chiral species, provided only their concentrations are used 
to define the order parameter of the reaction mixture. Nevertheless, these processes must be taken into 
account in a mathematical modelling of the reaction as well, because they transform chiral matter. 
Without them, any mathematical model of a reacting system wouldn’t be complete!

6.2. Reactant Cross-Catalysis 

Cross-catalysis can also be considered a coupled system of two indirectly product autocatalytic reactions, 
as e.g. can be seen from Scheme 2. But chemistry allows also for indirectly reactant autocatalytic (or 
reactant cross-catalytic) processes:

Consider, for example, the following - not necessarily stereoselective – reactions: 

(14) A + B + F  D + F (with reactant B and catalyst F) and

(15) E + F + B  C + B  (with reactant F and catalyst B)  

The above system is obviously cross-catalytic, because, in none of the two reactions is product also 
catalyst. Moreover, the catalysts are not product of the respective other reaction either. Therefore, (14) 
and (15) constitute a reactant cross-catalytic system, which however, results soon after reaction start in 
a deadlock situation, because the two reactions mutually block each other’s progress.

Notwithstanding, if there is also an additional production reaction for either of the reactant/catalysts in 
(14) or (15), or an impact of the concentrations of products C or D on other reactions in a coupled 
system, it is not recommendable to neglect such processes in a reaction simulation. 



8. Computational Methods

We used density functional theory (DFT) for geometry optimization without any geometry restrictions 
and with the GAUSSIAN09 quantum chemistry program suite.S8 Unless otherwise stated, B3LYP/6-31G* 
level had been used throughout, with Becke’s three parameter functionalS9 and the correlation 
correction of Lee, Yang and Parr.S10 Pople’s et al. valence split basis sets have been used throughout.S11 

All stationary points (minima and transition states) on their respective potential energy surfaces (PES) 
had been rigorously characterized by the number of imaginary frequencies in harmonic frequency 
calculations. Relative energies are zero-point energy (ZPE) corrected throughout. Thermodynamic 
correction to internal energies have been applied to obtain Gibbs free energies, based on the result of 
frequency computations. Transition state structures have been matched to their pertaining minimum 
structures by an intrinsic reaction coordinate (IRC) following algorithm. To evaluate the size of the error 
we make in not using a more sophisticated approach, we benchmarked our chosen level of theory by 
including solvent and dispersion effects in the calculation of reaction energies and activation barriers for 
the uncatalyzed single aldol addition step with the 6-311+G** basis set. In order to take into account 
dispersion energy effects, Grimme’s D3 semi-empirical dispersion energy correction has been used, 

together with Becke-Johnson damping, to facilitate convergence.S12  Solvent effects had been taken into 
account by using Tomasi’s polarizable continuum model (PCM) for solvent DMSO (dielectric constant εr = 
46.8).S13  Activation barriers and dimerization equilibrium constants have been calculated by assuming 
separated reactants without correcting for the basis set superposition error (BSSE). The BSSE correction 
in following this approach, i.e. when computing binding energies in hydrogen bonded complexes, is 
assumed to be small and often less than the size of corrections for solvent or dispersion effects and 
tends to increase the activation barrier and lowers the dimerization enthalpy.S14 Cartesian coordinates of 
all species can be requested from the authors. Numerical simulations have been carried out with 
Mathematica© from Wolfram Research. 
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