Electronic supporting information

Mixture screening strategy of efficient transition metal

heteronuclear dual-atom electrocatalysts toward nitrogen fixation

Zhouhao Zhu ^{a,b}†, Mengshan Chen °†, Mingyuzhi Sun °, Jinhu Wang °, Yingtang Zhou ^{c,*}, Xibao Li ^{d,*}, Hengcong Tao ^{b,*}

^a School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316022, China.

^b School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China.

^c National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.

^d School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, Chinas

*Corresponding author.

[†]Show that the authors contributed equally.

E-mail: zhouyingtang@zjou.edu.cn (Y. Zhou), lixibao@nchu.edu.cn (X. Li) hengcongtao@zjou.edu.cn (H. Tao).

	bond length (Å)						
Catalysts	M-M	M_1 - N_1	M_1 - N_2	M_1 - N_3	M_2 - N_4	M_2-N_5	M_2 - N_6
AuAu-NC	2.445	1.964	2.009	1.983	1.968	2.011	1.985
AuCo-NC	2.386	1.933	2.118	1.989	1.898	1.857	1.878
AuFe-NC	2.397	1.942	2.111	1.995	1.934	1.885	1.898
AuMo-NC	2.539	1.974	2.116	1.997	2.095	2.032	2.073
CoCo-NC	2.265	1.894	1.992	1.865	1.892	1.994	1.864
FeCo-NC	2.190	1.886	2.067	1.914	1.878	2.002	1.883
FeFe-NC	2.213	1.891	2.032	1.910	1.893	2.032	1.910
FeMo-NC	2.139	1.936	2.014	1.885	2.033	2.205	2.027
MoCo-NC	2.174	2.045	2.188	1.992	1.949	1.964	1.843
MoMo-NC	2.021	1.997	2.128	2.108	1.998	2.136	2.110
RuAu-NC	2.494	2.036	1.964	1.981	1.964	2.118	1.996
RuCo-NC	2.249	1.990	2.059	1.944	1.917	1.999	1.889
RuFe-NC	2.193	2.018	2.096	1.923	1.984	1.975	1.850
RuMo-NC	2.163	1.990	2.113	1.970	2.055	2.155	2.032
RuRu-NC	2.231	2.063	2.034	1.913	2.067	2.034	1.912
TiAu-NC	2.552	1.994	1.962	2.140	1.950	2.141	2.012
TiCo-NC	2.060	2.000	2.272	2.043	1.890	2.034	1.888
TiFe-NC	2.211	2.051	2.235	2.024	1.931	2.039	1.894
TiMo-NC	2.012	1.994	2.163	2.151	1.987	2.127	2.113
TiRu-NC	2.216	2.088	2.233	2.021	2.042	2.072	1.922
TiTi-NC	2.531	2.095	1.991	2.073	2.065	2.072	2.001
TiV-NC	2.565	2.106	1.966	2.056	2.015	2.033	1.928
VAu-NC	2.484	2.051	1.965	2.009	1.959	2.141	2.003
VCo-NC	2.117	1.986	2.158	1.954	1.913	2.015	1.871
VFe-NC	2.303	2.054	2.102	1.917	1.917	1.938	1.826
VMo-NC	2.412	2.116	1.999	1.953	2.116	2.085	1.996
VRu-NC	2.224	2.052	2.077	1.937	2.041	2.051	1.912
VV-NC	2.448	2.084	1.986	1.919	2.100	1.983	1.925

Table S1Partial bond lengths of M_1M_2 -NC.

Table S2

Catalysts	Energy (eV)	N ₂ adsorption (eV)		E _f (eV)	$E_{ads}(eV)$	
j	65 (- *)	side-on	end-on		side-on	end-on
AuAu-NC	-511.41	-528.08	-528.10	0.70	-0.04	-0.06
AuCo-NC	-516.81	-533.86	-533.87	-0.86	-0.42	-0.43
AuFe-NC	-517.75	-534.89	-534.88	-0.60	-0.51	-0.50
AuMo-NC	-518.50	-536.26	-536.25	1.35	-1.13	-1.13
CoCo-NC	-521.56	-538.34	-538.60	-1.77	-0.16	-0.41
FeCo-NC	-522.89	-539.52	-539.82	-1.90	0.00	-0.30
FeFe-NC	-523.75	-540.96	-540.96	-1.57	-0.58	-0.57
FeMo-NC	-525.18	-542.57	-542.15	-0.30	-0.76	-0.34
MoCo-NC	-524.11	-541.14	-541.24	-0.42	-0.40	-0.50
MoMo-NC	-526.44	-544.72	-543.94	1.14	-1.65	-0.86
RuAu-NC	-517.00	-533.89	-534.82	1.16	-0.26	-1.20
RuCo-NC	-522.29	-539.17	-539.90	-0.30	-0.25	-0.98
RuFe-NC	-523.60	-540.38	-541.03	-0.41	-0.15	-0.80
RuMo-NC	-525.27	-542.12	-542.06	0.62	-0.22	-0.16
RuRu-NC	-523.48	-540.04	-540.50	0.71	0.07	-0.39
TiAu-NC	-518.31	-535.82	-535.92	-1.56	-0.88	-0.99
TiCo-NC	-523.69	-541.21	-540.92	-3.10	-0.89	-0.59
TiFe-NC	-524.41	-541.94	-541.83	-2.62	-0.90	-0.79
TiMo-NC	-525.34	-544.34	-543.33	-0.86	-2.36	-1.36
TiRu-NC	-524.57	-541.55	-542.00	-1.78	-0.35	-0.80
TiTi-NC	-524.27	-543.47	-543.49	-2.88	-2.57	-2.59
TiV-NC	-524.90	-543.79	-542.59	-2.36	-2.26	-1.06
VAu-NC	-518.74	-535.83	-536.35	-0.83	-0.46	-0.99
VCo-NC	-523.94	-541.20	-541.33	-2.20	-0.63	-0.76
VFe-NC	-524.39	-542.39	-542.35	-1.45	-1.37	-1.33
VMo-NC	-525.15	-544.51	-544.58	0.49	-2.73	-2.80
VRu-NC	-524.78	-542.23	-542.23	-0.83	-0.82	-0.82
VV-NC	-525.40	-544.12	-542.95	-1.71	-2.09	-0.92

Formation energy (E_f) and adsorption energy (E_{ads}) of M_1M_2 -NC and N_2 adsorbed M_1M_2 -NC with side-on and end-on configurations.

Table S3.

puine puire		ingin a ana	e mile migre	D	
Metal	$E_{bulk}(eV)$	a (Å)	b (Å)	γ (degree)	E _M (eV)
Au	-12.77	4.08	4.078	90	-3.19
Co	-14.07	2.51	2.171	90	-7.03
Fe	-16.46	2.87	2.866	90	-8.23
Mo	-21.86	3.15	3.147	90	-10.93
Ru	-18.47	2.71	2.706	120	-9.23
Ti	-15.66	2.95	2.951	120	-7.83
V	-17.97	3.03	3.028	90	-8.99

Total energy (E_{bulk}) and average energy (E_M) of metal atoms in their bulk phase and structural parameters (lattice length a and b and angle γ)

Table S4.

Catalysts	U _L vs. CHE	References
VRu-NC	-0.21	771
TiCo-NC	-0.23	I his work
Ru (0001)	-0.98	1
Ti@N ₄	-0.69	2
V@N4	-0.87	2
Mo ₂ @V ₃ C ₂ O ₂	-0.31	
$Mo_3@V_3C_2O_2$	-0.33	3
$W_2 @V_3 C_2 O_2$	-0.34	5
$W_3 @V_3 C_2 O_2$	-0.31	
Ti2-Pc	-0.75	
V2-Pc	-0.39	
TiV-Pc	-0.74	4
VCr-Pc	-0.85	
VTa-Pc	-0.47	
VFe-N-C	-0.36	5
Ru ₂ @GY	-0.43	6
Mo ₃ @GDY	-0.32	7
FeCo@GDY	-0.44	8
NiCo@GDY	-0.36	0

Comparison of calculated limiting potential (U_L) of NRR on different catalysts.

Fig. S1. Optimized structure of substrate nitrogen-doped graphene.

Fig. S2. Charge density differences of VRu-NC, TiCo-NC, FeMo-NC, VCo-NC and TiRu-NC. the yellow and cyan areas denote as the charge accumulation and loss, respectively. The isosurface value is set as 0.003 e/Å^3

Fig. S3. Optimized structures and bond lengths of reaction intermediates on VRu-NC surface.

Fig. S4. Optimized structures and bond lengths of reaction intermediates on TiCo-NC surface.

Fig. S5. The free energy diagrams for the NRR towards NH₃ and the corresponding free energy changes with the introduction of electrode potential of a) VRu-NC, b) TiCo-NC, c) FeMo-NC, d) VCo-NC and e) TiRu-NC.

Fig. S6. Optimized structures and bond lengths of NH_3 adsorbed on surface VRu-NC, TiCo-NC, FeMo-NC, VCo-NC and TiRu-NC.

S1. The crystallographic information file of substrate nitrogen-doped graphene.

CRYSTAL DATA

#=

#-----

data_VESTA_phase_1

_chemical_name_common	'Graphene
_cell_length_a	12.297500
_cell_length_b	12.780000
_cell_length_c	15.000000
_cell_angle_alpha	90.000000
_cell_angle_beta	90.000000
_cell_angle_gamma	90.000000
_cell_volume	2357.430635
_space_group_name_H-M_alt	'P 1'
_space_group_IT_number	1

loop_

_space_group_symop_operation_xyz

'x, y, z'

loop_

atom site label _atom_site_occupancy atom site fract x _atom_site_fract_y _atom_site_fract_z atom site adp type _atom_site_B_iso_or_equiv _atom_site_type_symbol C1 0.003015 0.112312 0.206550 Biso 1.000000 C 1.0 C2 1.0 0.107307 0.280879 0.206550 Biso 1.000000 C C3 1.000000 C 1.0 0.006376 0.224476 0.206550 Biso C4 1.0 0.102233 0.055782 0.206550 Biso 1.000000 C C5 1.0 0.203029 0.110999 0.206550 Biso 1.000000 C C6 1.0 0.210920 0.223531 0.206550 Biso 1.000000 C C7 1.0 0.301481 0.054598 0.206550 Biso 1.000000 C C8 1.0 0.401788 0.109127 0.206550 Biso 1.000000 C C9 1.000000 C 1.0 0.402673 0.220717 0.206550 Biso C10 1.000000 C 1.0 0.501327 0.055074 0.206550 Biso C11 1.0 0.600112 0.112139 0.206550 Biso 1.000000 C C12 1.0 0.701376 0.281491 0.206550 Biso 1.000000 C C13 Biso 1.000000 C 1.0 0.593843 0.224821 0.206550 C14 1.0 0.700591 1.000000 C 0.057075 0.206550 Biso

C15	1.0	0.801457	0.111865	0.206550	Biso	1.000000 C
C16	1.0	0.902786	0.277976	0.206550	Biso	1.000000 C
C17	1.0	0.801721	0.222830	0.206550	Biso	1.000000 C
C18	1.0	0.901871	0.056775	0.206550	Biso	1.000000 C
C19	1.0	-0.000354	0.445101	0.206550	Biso	1.000000 C
C20	1.0	0.098306	0.610525	0.206550	Biso	1.000000 C
C21	1.0	-0.002795	0.555385	0.206550	Biso	1.000000 C
C22	1.0	0.103598	0.393950	0.206550	Biso	1.000000 C
C23	1.0	0.306139	0.608490	0.206550	Biso	1.000000 C
C24	1.0	0.198602	0.551840	0.206550	Biso	1.000000 C
C25	1.0	0.497308	0.612630	0.206550	Biso	1.000000 C
C26	1.0	0.689067	0.609875	0.206550	Biso	1.000000 C
C27	1.0	0.796294	0.439436	0.206550	Biso	1.000000 C
C28	1.0	0.893639	0.608894	0.206550	Biso	1.000000 C
C29	1.0	0.792655	0.552530	0.206550	Biso	1.000000 C
C30	1.0	0.900257	0.388272	0.206550	Biso	1.000000 C
C31	1.0	-0.001826	0.776525	0.206550	Biso	1.000000 C
C32	1.0	0.100388	0.943955	0.206550	Biso	1.000000 C
C33	1.0	-0.000308	0.888470	0.206550	Biso	1.000000 C
C34	1.0	0.098588	0.721456	0.206550	Biso	1.000000 C
C35	1.0	0.199436	0.776200	0.206550	Biso	1.000000 C
C36	1.0	0.300016	0.943423	0.206550	Biso	1.000000 C
C37	1.0	0.199984	0.887695	0.206550	Biso	1.000000 C
C38	1.0	0.299920	0.721148	0.206550	Biso	1.000000 C
C39	1.0	0.398680	0.778242	0.206550	Biso	1.000000 C
C40	1.0	0.500242	0.944087	0.206550	Biso	1.000000 C
C41	1.0	0.399758	0.889211	0.206550	Biso	1.000000 C
C42	1.0	0.498207	0.724235	0.206550	Biso	1.000000 C
C43	1.0	0.598530	0.778742	0.206550	Biso	1.000000 C
C44	1.0	0.700056	0.945577	0.206550	Biso	1.000000 C
C45	1.0	0.600000	0.889890	0.206550	Biso	1.000000 C
C46	1.0	0.696963	0.722377	0.206550	Biso	1.000000 C
C47	1.0	0.797807	0.777531	0.206550	Biso	1.000000 C
C48	1.0	0.900353	0.944819	0.206550	Biso	1.000000 C
C49	1.0	0.799647	0.889334	0.206550	Biso	1.000000 C
C50	1.0	0.897037	0.721023	0.206550	Biso	1.000000 C
N1	1.0	0.307368	0.273597	0.206550	Biso	1.000000 N
N2	1.0	0.499015	0.276122	0.206550	Biso	1.000000 N
N3	1.0	0.197650	0.448327	0.206550	Biso	1.000000 N
N4	1.0	0.400986	0.557193	0.206550	Biso	1.000000 N
N5	1.0	0.592614	0.559775	0.206550	Biso	1.000000 N
N6	1.0	0.702261	0.384988	0.206550	Biso	1.000000 N

References

- E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson and J. K. Norskov, *Phys Chem Chem Phys*, 2012, 14, 1235-1245.
- 2. C. Choi, S. Back, N. Kim, J. Lim, Y. Kim and Y. Jung, *ACS Catal.*, 2018, **8**, 7517-7525.
- 3. J. Wan, Y. Wang, W. Tian, H. Zhang and Y. Wang, *Appl. Surf. Sci.*, 2021, **569**, 151020.
- X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen and S. Huang, J. Am. Chem. Soc., 2020, 142, 5709-5721.
- C. N. Sun, Z. L. Wang, X. Y. Lang, Z. Wen and Q. Jiang, *ChemSusChem*, 2021, 14, 4593-4600.
- 6. L. Jasin Arachchige, Y. Xu, Z. Dai, X. Zhang, F. Wang and C. Sun, J. Phys. Chem. C, 2020, **124**, 15295-15301.
- 7. M. Li, Y. Cui, X. Zhang, Y. Luo, Y. Dai and Y. Huang, J. Phys. Chem. Lett., 2020, 11, 8128-8137.
- 8. D. Ma, Z. Zeng, L. Liu and Y. Jia, J. Energy Chem., 2021, 54, 501-509.