Supporting Information

Understanding the influence of Bi/Sb substitution on carrier concentration in Mg₃Sb₂-based materials: Decreasing bandgap enhances the degree of impurity ionization

Juan Li,^a Fei Jia,^{b,**} Kai Han,^a Bing Sun,^a Lianzhen Cao,^a Yingde Li^a and Shuai Zhang^{a,*}

^a School of Physics and Electronic Information, Weifang University, Weifang 261061, China

^b Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China

Supplementary Table

Table S1 The sample density (d) of $Mg_{3.175}Mn_{0.025}Sb_{1.96-x}Bi_xTe_{0.04}$ measured by Archimedes method.

Samples	Density (g/cm ³)	Relative density (%)
x=0.48	4.4	97%
<i>x</i> =1.2	5.03	95%
<i>x</i> =1.44	5.28	93%

Supplementary Figure

Fig. S1 The optimized crystal structures of $Mg_3Sb_{2-x}Bi_x$ (*x*=0, 1 and 2).