Supporting Information

CO₂ Electroreduction Performance of PtS₂ Supported Single Transition Metal Atoms: A Theoretical Study

Yu-wang Sun, Jing-yao Liu*

Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun

130023, People's Republic of China

Submitted to: Phys. Chem. Chem. Phys.

*Corresponding author: Dr. Jing-yao Liu;

E-mail

address: ljy121@jlu.edu.cn. (J.Y. Liu)

Fig. S1 Optimized structure of single TM atom anchored to the S-vacancy in 1T-PtS₂.

Table S1 Binding energies (E_b , eV) of the metal atom anchored on the S vacancy [E_b (TM-PtS₂)] and surface of PtS₂ [E_b (TM@PtS₂-Sv)], and the formation energies (E_f , eV) of the single TM atom and two TM atoms.

TM	$E_b(\text{TM-PtS}_2)$	$E_b(TM@PtS_2-Sv)$	$E_f(\text{TM-PtS}_2)$	$E_f(\mathrm{TM}_2-\mathrm{PtS}_2)$
Sc	-6.22	-5.32	-1.60	-
Ti	-6.69	-5.05	-0.53	0.66
V	-5.06	-3.69	0.87	1.19
Cr	-6.56	-2.53	0.87	1.26
Mn	-4.17	-1.17	-0.69	0.25
Fe	-4.46	-3.42	1.10	1.47
Co	-4.5	-3.34	1.08	1.48
Ni	-5.32	-3.96	0.31	0.98
Cu	-3.48	-2.46	0.38	1.78
Zn	-1.47	-0.43	-0.10	0.04

Table S2 Formation energy E_f (in eV) and dissolution potential U_{diss} of TM-PtS₂ (in

V).								
Catalysts	Ef	U^0_{diss} (metal)	n	U _{diss}				
Sc-PtS ₂	-1.6	-2.08	3	-1.55				
Ti-PtS ₂	-0.53	-1.63	2	-1.37				
V-PtS ₂	0.87	-1.18	2	-1.62				
Cr-PtS ₂	0.87	-0.91	2	-1.34				
Mn-PtS ₂	-0.69	-1.19	2	-0.85				
Fe-PtS ₂	1.10	-0.45	2	-1.00				
Co-PtS ₂	1.08	-0.28	2	-0.82				
Ni-PtS ₂	0.31	-0.26	2	-0.42				
Cu-PtS ₂	0.38	0.34	2	0.15				
Zn-PtS ₂	-0.1	-0.76	2	-0.71				
$Fe@1T'-MoS_2^*$	2.72	-0.45	2	-1.81				
$Co@1T'-MoS_2^*$	1.80	-0.28	2	-1.18				
$Ni@1T'-MoS_2^*$	1.62	-0.26	2	-1.07				

* These are electrocatalysts that have been synthesized experimentally in Ref. 30.

Fig. S4 Variations of energy as a function of the time for AIMD simulations with the solvation model on V- and Fe-PtS₂, and the insets show the corresponding geometry configurations for AIMD simulations at 0 ps and 10 ps

Fig. S5 Optimized structures of the CO₂RR involved intermediate species on Sc-PtS₂.

Fig. S6 Optimized structures of the CO₂RR involved intermediate species on Ti-

PtS₂.

Fig. S7 Optimized structures of the CO₂RR involved intermediate species on V-

PtS₂.

Fig. S8 Optimized structures of the CO_2RR involved intermediate species on $Cr-PtS_2$.

Fig. S9 Optimized structures of the CO₂RR involved intermediate species on Mn-PtS₂.

Fig. S10 Optimized structures of the CO₂RR involved intermediate species on Fe-

Fig. S11 Optimized structures of the CO_2RR involved intermediate species on Co-PtS₂.

Fig. S12 Optimized structures of the CO₂RR involved intermediate species on Ni-

PtS₂.

Fig. S13 Optimized structures of the CO2RR involved intermediate species on Cu-

PtS₂.

Fig. S14 Optimized structures of the CO₂RR involved intermediate species on Zn-PtS₂.

 U_L (HCOOH) catalyst PDS $U_L(CO_2RR)$ $U_L(HER)$ Product $-U_L(H_2)$ Sc $*+CO_2 \rightarrow *HCOO$ -0.24 -2.26 2.02 НСООН $*+CO_2 \rightarrow *COOH$ -1.39 CO *HCOOH \rightarrow *H₂COOH CH₄/CH₃OH -0.86 Ti $*+CO_2 \rightarrow *HCOO$ -0.41 -1.86 1.45 НСООН $*+CO_2 \rightarrow *COOH$ -1.42 CO *НСООН→*СНО -1.46 CH₄/CH₃OH *+ CO_2 \rightarrow *COOH V -0.06 -0.63 0.57 НСООН *COOH→*CO -0.26 CO/CH₃OH $*OH \rightarrow *H_2O$ -0.46 CH_4 Cr *+ $CO_2 \rightarrow HCOO$ -0.39 -1.29 0.90 НСООН $*+CO_2 \rightarrow *COOH$ -0.79 CO *НСООН→*СНО -1.15 CH_4 *+ $CO_2 \rightarrow HCOO$ 0.61 Mn -0.74 -1.35 НСООН $*+CO_2 \rightarrow *COOH$ -2.10 CO *НСООН→*СНО -0.88 CH₄/CH₃OH 0 Fe *HCOO→*HCOO -0.70 0.70 HCOOH $*+CO_2 \rightarrow *COOH$ -0.64 CO *HCOOH \rightarrow *H₂COOH *HCOOH→*H₂COOH -0.32

Table S3 Potential determining steps (PDS) of C_1 products and limiting potentials (U_L , V) of CO_2RR and HER on various TM-PtS₂ monolayers

Co	*+ $CO_2 \rightarrow$ *HCOO	-0.23	-0.55	0.32	HCOOH/CH ₄ /CH ₃ OH
Ni	*+ CO_2 →*HCOO	-0.72	-0.95	0.23	HCOOH/CH ₄ /CH ₃ OH
Cu	*+ $CO_2 \rightarrow$ *HCOO	-0.25	-0.78	0.53	НСООН
	*+CO ₂ →*COOH	-0.98			СО
	*HCOOH→*H ₂ COOH	-0.76			CH ₄ /CH ₃ OH
Zn	*НСОО→*НСООН	-0.49	-0.53	0.04	HCOOH/CH ₄ /CH ₃ OH
	+ CO_2 → $COOH$	-1.02			