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Figure S1. Micro-zone optical images for IFsLI case 1 in a red square and IFsLI case 2 in a 

blue square, respectively (scale bar, 500 m), where the light-yellow background is covered 

by the pristine monolayer WSe2 film, the brown spot with a diameter of ~300 m for IFsLI 

case 1 and a darker and larger modified spot with a diameter of ~400 m for IFsLI case 2 are 

the femtosecond laser modification areas caused by pump pulses..
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Figure S2. Two-peak fitting for the steady-state PL spectra of (a) pristine monolayer WSe2 on 

the sapphire substrate, (b) monolayer WSe2 with a moderate modification (IFsLI case 1) and 

(c) monolayer WSe2 with a strong modification (IFsLI case 2). The peak 1 could be the 

radiative recombination of band-edge excitons. The peak 2 could be attributed to the defects.1
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Figure S3. Comparison between initial TA spectra at 1 ps of monolayer WSe2 with a strong 

modification (IFsLI case 2) and WO3 (multiplying by a factor of 0.5) in ref. S2, where the 

transient signal at ~550 nm is assigned to the photogenerated holes on WO3.
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Figure S4. The exciton-density-dependent initial amplitude of GSB signals for (a) A-/B-

exciton states, and (b) A-/C-exciton states.
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Figure S5. Steady-state absorption spectra of graphene and monolayer WSe2 covered by 

graphene.
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Table S1. Parameters for the PL peak fitting of monolayer WSe2 with/without IFsLI 

treatments

Peak 1 (nm) Peak 2 (nm) Spectral weight for 

Peak 1 %

Spectral weight for 

Peak 2 %

Pristine monolayer WSe2 754.9 780.5 92 8

IFsLI case 1 754.7 777.7 82 18

IFsLI case 2 754.5 768.5 51 49
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Table S2. Parameters for the XPS peak fitting of monolayer WSe2 with/without IFsLI 

treatments

Pristine monolayer WSe2 IFsLI case 1 IFsLI case 2Bonding

Binding 

energy 

(eV)

FWHM 

(eV)

Area % Binding 

energy 

(eV)

FWHM 

(eV)

Area % Binding 

energy 

(eV)

FWHM 

(eV)

Area %

W4f7/2 WSe2 32.49 1.25 35.69 32.77 0.96 36.54 32.43 0.97 32.25

W4f5/2 WSe2 34.90 1.84 46.00 34.93 1.04 29.69 34.55 0.99 24.18

W5p3/2 WSe2 37.77 2.10 18.31

W4f7/2 WO3 36.26 1.36 16.37 36.04 1.54 22.99

Overlapping of 

W4f5/2 WO3 and 

W5p3/2 WSe2

38.32 1.51 17.40 38.19 1.59 20.58
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Table S3. Formation energy of VSe and OSe under the W-rich condition and Se-rich condition.

Formation energy (eV) W-rich Se-rich

VSe 1.61 2.44

OSe (O2 reservoir) -2.63 -1.81

OSe (WO3 reservoir) 0.15 0.42
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Table S4. Femtosecond time-resolved TA dynamics parameters obtained by multiple-

exponential fitting under 400 nm excitation.

Lifetime 
component

1 (ps) 2 (ps) 3 (ps) ave (ps)

A exciton 3.7
(57.7%)

39
(33.3)

605
(9.0%)

69.5

B exciton 0.37
(37.5%)

4.5
(43.6%)

63
(18.9%)

14.0

monolayer WSe2 

C exciton 12
(56.9%)

84
(43.1%)

43

Lifetime 
component

1 (ps) 2 (ps) 3 (ps) ave (ps) 

A exciton 0.60
(55.4%)

2.8
(38.9%)

114
(5.7%)

7.9 0.89

B exciton 0.37
(66.2%)

1.7
(25.3%)

15
(8.5%)

2.0 0.86

monolayer WSe2 
/Graphene

C exciton 0.69
(56.5%)

20
(43.5%)

9.1 0.79

carrier extraction efficiency: 
22 WSeGrapheneWSe /-1  
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