XPS and quantum chemical analysis of 4Me-BODIPY derivatives

Sergey A. Tikhonov^{a,b}, Andrey E. Sidorin^b, Alexander A. Ksenofontov^c, Denis Yu. Kosyanov^{b,d}, Ilya S. Samoilov^e, Anna D. Skitnevskaya^f, Alexander B. Trofimov^{f,g}, Elena V. Antina^c, Mikhail B. Berezin^c, Vitaliy I. Vovna^b

^{*a*} Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences, Petropavlovsk-Kamchatsky 683023, Russian Federation

^b Far Eastern Federal University, Vladivostok 690922, Russian Federation

^c G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences,

Ivanovo 153045, Russian Federation

^dInstitute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russian Federation

^e Saint Petersburg State University, Department of Photonics, St. Petersburg 199034, Russian Federation

^fIrkutsk State University, Laboratory of Quantum Chemistry, Irkutsk 664003, Russian Federation

^g Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russian Federation

Fig. S1. Chemical structure of compounds II-V.

Fig. S2. Chemical structure of compounds IV and V.

Fig. S3. Molecular orbitals of compounds II and III.

Fig. S4. Molecular orbitals of compounds IV and V.

Fig. S5. Correlation diagram of excited states of compounds I–V.

Vertical ionization energies I_n (eV) and pole strengths f (a.u.) of the BODIPY core outer valence MOs computed at OVGF level of theory using different basis sets. The vertical electron attachment energy and the corresponding pole strength for the lowest unoccupied MO, 7b₁ (π_7 *), is also included.

	cc-pV	cc-pVDZ		pVDZ	cc-pVTZ		
Molecular orbital	I_n	f	I_n	f	I_n	f	
L, $\pi_7 (7b_1)$	0.92	0.89	1.27	0.89	1.20	0.89	
H, $\pi_6(4a_2)$	7.62	0.88	7.83	0.88	7.84	0.88	
H-1, $\pi_5(3a_2)$	9.20	0.86	9.40	0.85	9.42	0.85	
H–2, $\pi_4(6b_1)$	9.40	0.85	9.61	0.84	9.62	0.84	
H–3, $\pi_3(5b_1)$	10.32	0.81	10.51	0.80	10.51	0.80	
H–4, n. $(11b_2)$	12.15	0.89	12.45	0.88	12.42	0.88	
H–5, $n_+(14a_1)$	12.96	0.88	13.22	0.87	13.20	0.87	
H–7, $\pi_2(2a_2)$	13.22	0.80	13.48	0.77	13.49	0.78	
H–6, n. $(10b_2)$	13.31	0.87	13.49	0.87	13.45	0.87	

	cc-p	cc-pVDZ		pVDZ	cc-p	cc-pVTZ	
Excitation	Е	f	Е	f	Е	f	
$1^{1}B_{2}$	2.83	0.50	2.76	0.50	2.77	0.49	
2^1B_2	3.85	0.23	3.77	0.21	3.78	0.21	
$2^{1}A_{1}$	3.95	0.04	3.88	0.04	3.89	0.04	
$3^{1}A_{1}$	5.41	0.07	5.31	0.06	5.30	0.07	

Energies E (eV) and oscillator strength f (a.u.) of vertical singlet excitations of the BODIPY I, calculated using ADC(2) and different basis sets.

Table S3

Energies (eV) of vertical singlet excitations of the BODIPY I obtained at the ADC(2)/cc-pVDZ level in the gas phase and considering solvation within different solvents using SS(V)PE continuum solvation model compared with experiment [81].

Excitation	Gas phase	Chloroform	Cyclohexane	THF	Ethanol	${\rm H_2O}$	$\mathrm{H}_2\mathrm{O}^a$	DMSO	DMSO ^a
$1 \ ^1B_{2 \ expl}$		2.46 ^[81]	2.46 ^[81]	2.48 ^[81]	2.49 ^[81]				
$1 {}^{1}B_2$	2,83	2.83	2,84	2,86	2,87	2,87	2,84	2,87	2,84
$2 {}^1B_2$	3,85	3.89	3,89	3,92	3,94	3,94	3,88	3,94	3,89
$2 {}^{1}A_{1}$	3,95	3.99	4,00	4,04	4,06	4,06	4,01	4,06	4,01
$3 {}^{1}A_{1}$	5,41	5.42	5,42	5,44	5,44	5,44	5,40	5,44	5,41

^a calculations with geometrical parameters pre-optimized accounting for solvation effects at the SS(V)PE level.

Table S4

Geometric parameters of compounds I-V in the S₀ ground state ^a and S₁ excited state ^b.

Compound		Chemical bond, Å												
1	F_1 -	$-\mathbf{B}_1$	B_1 -	N_1	N_1	-C9	C9-	$-C_4$	C_1	$-R_1$	C ₃ .	-R ₃	C_2	$-R_2$
	S_0	S_1	S_0	S_1	S_0	S_1	S_0	S_1	S_0	S_1	S_0	S_1	S_0	S_1
Ι	1.38	1.38	1.58	1.54	1.39	1.41	1.40	1.38	1.09	1.09	1.09	1.09	1.09	1.09
II	1.39	1.40	1.57	1.56	1.40	1.41	1.39	1.41	1.50	1.50	1.49	1.50	1.09	1.09
III	1.39	1.40	1.57	1.56	1.39	1.41	1.39	1.41	1.50	1.49	1.49	1.49	1.89	1.87
IV	1.39	1.39	1.57	1.57	1.39	1.39	1.39	1.39	1.50	1.50	1.50	1.50	1.50	1.50
V	1.39	1.40	1.57	1.55	1.39	1.42	1.39	1.41	1.50	1.50	1.50	1.49	1.51	1.50

^a The equilibrium S₀ geometry was computed using DFT/CAM-B3LYP/Def2-SVP approach.

^b The equilibrium S₁ geometry was computed using TD-DFT/CAM-B3LYP/Def2-SVP approach.

Relative photoionization cross sections σ [86] for the radiation source MgK α (hv = 1253.6 eV).

Atom	2p	2s
С	1.0	66.0
Ν	7.2	110.0
F	68.0	280.0
В	0.2	28.0
	4p	-
Br	450.0	-
	-	1s
Η	-	0.2

Localization (Mulliken populations according to the CAM-B3LYP method) and calculated energies of some lower valence MOs of the compound II which correspond to maxima 2-5 in the X-ray photoelectron spectra.

Deal	MO	$\sim eV$	Localization (%)					
ГСак.	MO	$-\varepsilon_i c v$	C 2s/2p	N 2s/2p	F 2s/2p	Br 4s/4p		
2	$67, 11a_1$	15.88	5/48	1/2	2/26	0/2		
	$66, 8b_1$	16.08	11/38	1/16	0/5	6/11		
	$65, 7b_1$	16.99	12/49	1/24	0/1	1/1		
2'	$64, 6b_1$	17.69	23/52	2/5	0/2	0/1		
	$63, 10a_1$	17.78	13/40	1/19	2/8	0/0		
	$62, 9a_1$	18.17	20/29	0/20	1/5	9/5		
	$61, 8a_1$	19.21	40/23	0/13	0/0	0/0		
3	$60, 5b_1$	20.67	45/28	0/7	0/0	3/0		
	59, $4b_1$	21.63	34/28	6/2	0/0	10/0		
	58, $7a_1$	21.84	37/26	4/5	0/1	5/0		
	57, $6a_1$	22.55	52/20	4/1	0/0	2/0		
	56, $3b_1$	22.76	43/14	4/4	0/0	20/0		
	55, 5 <i>a</i> ₁	23.44	27/17	1/3	0/0	45/0		
	54, $3b_1$	24.09	56/12	0/4	0/0	19/0		
	53, $4a_1$	25.01	71/7	6/6	0/0	1/0		
	$52, 2b_1$	25.12	41/7	10/0	0/0	35/2		
	$51, 3a_1$	25.36	50/7	5/3	0/0	29/2		
4	$50, 1b_1$	29.29	42/5	45/4	0/0	0/0		
	49, $2a_1$	29.71	39/7	47/3	1/0	0/0		
5	$48, 1b_2$	33.06	0/0	0/0	88/1	0/0		
	47, $1a_1$	33.99	0/1	1/1	85/2	0/0		

Localization (Mulliken populations according to the CAM-B3LYP method) and calculated energies of some lower valence MOs of the compound III which correspond to maxima 2-5 in the X-ray photoelectron spectra.

Dealr	MO	$\sim 2V$	Lo	Localization (%)			
Peak.	MO	$-\varepsilon_i e v$	C 2s/2p	N 2s/2p	F 2s/2p		
2'	$36 8b_1$	16.21	7/51	0/15	0/4		
	$35 7b_1$	16.91	18/39	3/21	0/0		
	$34 \ 6b_1$	17.06	25/50	2/6	0/3		
	33 9 a_1	17.35	13/34	1/20	2/11		
2	$32 8a_1$	18.50	18/33	1/23	1/3		
	31 7 <i>a</i> ₁	18.81	43/25	0/8	0/0		
3	$30 \ 5b_1$	20.38	46/28	2/6	0/0		
	29 $4b_1$	21.51	44/27	3/2	0/0		
	28 $6a_1$	21.60	44/24	3/4	0/0		
	27 $5a_1$	22.23	54/21	4/0	0/0		
	$26 \ 3b_1$	22.93	61/12	6/6	0/0		
	$25 \ 2b_1$	24.07	65/14	9/1	0/0		
	24 $4a_1$	24.16	62/16	9/3	0/0		
	23 $3a_1$	24.60	74/7	3/8	0/0		
4	22 1 b_1	28.76	41/6	46/4	0/0		
	21 $2a_1$	29.21	38/7	48/2	0/0		
5	$20\ 1b_2$	32.69	0/0	0/0	88/1		
	19 1 <i>a</i> ₁	33.63	0/0	1/1	85/2		

Localization (Mulliken populations according to the CAM-B3LYP method) and calculated energies of some lower valence MOs of the compound IV which correspond to maxima 2-5 in the X-ray photoelectron spectra.

Dealr	MO	$\sim 2V$	Lo	Localization (%)			
Peak.	MO	$-\varepsilon_i e v$	C 2s/2p	N 2s/2p	F 2s/2p		
2'	52, 14 <i>a</i> ₁	15.58	4/54	0/2	1/17		
	$51, 10b_1$	16.46	11/52	1/22	0/1		
	$50, 9b_1$	17.11	22/53	2/5	0/2		
	49, 13 <i>a</i> ₁	17.18	16/55	0/10	0/1		
	48, $12a_1$	17.35	16/21	1/22	2/13		
	$47, 8b_1$	17.83	28/29	0/0	0/0		
	$46, 11a_1$	17.89	30/27	0/2	0/0		
2	45, $10a_1$	18.67	39/22	0/15	0/0		
	44, $7b_1$	19.26	42/24	1/4	0/0		
	$43, 9a_1$	19.71	42/25	1/4	0/1		
	$42, 6b_1$	20.29	46/26	1/6	0/0		
3	$41, 5b_1$	21.18	43/26	5/1	0/0		
	40, $8a_1$	21.37	40/24	4/4	0/1		
	$39, 4b_1$	22.04	52/20	1/2	0/0		
	38, $7a_1$	22.05	53/20	2/1	0/0		
	37, $6a_1$	22.29	59/20	1/0	0/0		
	$36, 3b_1$	23.07	67/11	3/4	0/0		
	35, 5 <i>a</i> ₁	23.72	66/14	2/2	0/0		
	$34, 2b_1$	23.80	67/12	3/1	0/0		
	33, $4a_1$	24.45	71/6	7/6	0/0		
	32, $1b_1$	24.46	71/8	7/0	00		
	31, $3a_1$	24.65	75/8	3/4	0/0		
4	$30, 1b_1$	28.65	41/6	46/4	0/0		
	29, $2a_1$	29.10	38/7	48/2	0/0		
5	$28, 1b_2$	32.62	0/0	0/0	88/1		
	27, $1a_1$	33.56	0/0	1/1	85/2		

Localization (Mulliken populations according to the CAM-B3LYP method) and calculated energies of some lower valence MOs of the compound V which correspond to maxima 2-5 in the X-ray photoelectron spectra.

Dealr	MO	a a V	Lo	calization (%)
Реак.	MO	$-\varepsilon_i e v$	C 2s/2p	N 2s/2p	F 2s/2p
2	$61, 13b_1$	16.56	11/52	1/22	0/1
	$60, 12b_1$	17.18	23/52	2/4	0/2
	59, 15 <i>a</i> ₁	17.23	17/55	0/9	0/1
	58, 14 <i>a</i> ₁	17.42	17/26	1/20	2/12
	57, $11b_1$	18.01	33/47	0/1	0/0
	56, 13 <i>a</i> ₁	18.28	31/46	0/7	0/1
	55, $10b_1$	18.53	35/44	0/0	0/0
	54, 12 <i>a</i> ₁	18.55	34/43	0/2	0/0
	53, $11a_1$	18.78	42/24	0/12	0/0
3	$52, 9b_1$	20.13	46/31	0/7	0/0
	$51, 8b_1$	20.72	42/29	6/2	0/0
	50, $10a_1$	20.93	42/30	3/5	0/1
	$49, 9a_1$	21.69	47/28	1/2	0/0
	$48, 7b_1$	21.70	48/29	0/1	0/0
	$47, 8a_1$	22.25	54/21	4/0	0/0
	$46, 6b_1$	22.48	67/20	0/0	0/0
	45, $7a_1$	22.49	67/20	0/0	0/0
	44, $5b_1$	22.73	64/16	4/3	0/0
	$43, 6a_1$	23.16	65/21	1/2	0/0
	$42, 4b_1$	23.56	70/15	0/3	0/0
	$41, 3b_1$	24.35	69/12	9/0	0/0
	40, $5a_1$	24.49	68/10	11/2	0/0
	39, $4a_1$	24.62	76/9	0/8	00
	$38, 2b_1$	25.71	86/8	0/0	0/0
	$37, 3a_1$	25.72	86/8	0/0	0/0
4	$36, 1b_1$	28.72	42/6	45/4	0/0
	$35, 2a_1$	29.17	39/7	48//2	1/0
5	$34, 1b_2$	32.68	0/0	0/0	88/1
	33, $1a_1$	33.61	0/1	1/1	85/2

Experimental energies and half-widths of bands in X-ray photoelectron spectra of 1s-Electrons of compounds II-IV.

Compound,	Ι	Ι	Ι	II	Γ	V	V	r
electron	E _b	Half-						
levels		width		width		width		width
F 1s	686.0	1.8	686.0	1.7	686.0	1.8	686.0	1.6
N 1s	399.8	1.7	399.8	1.7	399.8	2.2	399.9	1.4
C 1s	285.4	1.9	285.3	1.9	285.5	1.6	285.5	1.4
B 1s	193.3	1.9	193.5	1.5	193.4	1.7	193.4	1.3
Br 3p 3/2	-	-	191.1	2.6	-	-	-	-
Br 3p 1/2	-	-	184.6	2.6	-		-	-
Br 3d	-	-	71.4	2.0	-	-	-	-

Table S11 Differences in the calculated energy intervals (eV) between I_1 - I_n , in comparison with the OVGF method data (Δ OVGF).

Energy		∆OVGF	
	BHHLYP	CAM-B3LYP	ωB97X
		Ι	
$I_2 - I_1$	0.01	-0.09	0.09
$I_3 - I_1$	0.01	-0.10	0.08
$I_4 - I_1$	0.08	0.07	0.28
$I_{5}-I_{1}$	-0.12	-0.89	-0.72
$I_6 - I_1$	-0.21	-1.00	-0.83
$I_7 - I_1$	-0.14	-1.14	0.97
$I_8 - I_1$	-0.03	-0.52	-0.35
		II	
$I_2 - I_1$	0.03	-0.09	0.09
$I_3 - I_1$	0.02	-0.11	0.07
$I_4 - I_1$	0.11	0.04	0.23
$I_5 - I_1$	-0.17	-0.78	-0.61
$I_6 - I_1$	-0.10	-0.63	-0.45
$I_{7} - I_{1}$	-0.04	-0.64	-0.08
$I_8 - I_1$	-0.16	-0.67	0.15
· · · · ·]	III	
$I_2 - I_1$	-0.06	-0.15	0.01
$I_3 - I_1$	-0.08	-0.19	-0.03
$I_4 - I_1$	-0.02	-0.09	0.09
$I_{5} - I_{1}$	-0.38	-0.60	-0.39
$I_6 - I_1$	-0.40	-0.61	-0.39
$I_7 - I_1$	-0.30	-0.49	-0.27
$I_8 - I_1$	-0.24	-0.37	-0.29
$I_2 - I_1$	-0.25	-0.85	-0.54
		IV	
$I_2 - I_1$	0.04	-0.07	0.09
$I_3 - I_1$	0.05	-0.07	0.08
$I_4 - I_1$	0.08	-0.01	0.18
$I_{5}-I_{1}$	-0.36	-0.59	-0.50
$I_6 - I_1$	-0.55	-1.02	-0.85
$I_7 - I_1$	-0.43	-0.83	-0.61
$I_8 - I_1$	-0.41	-0.72	-0.62
$I_9 - I_1$	-0.23	-0.97	-0.63
		V	
$I_2 - I_1$	-0.24	-0.30	-0.14
$I_3 - I_1$	-0.26	-0.29	0.19
$I_4 - I_1$	-0.19	-0.21	-0.06
$I_{5} - I_{1}$	-0.01	-0.18	-0.37
$I_6 - I_1$	-0.14	-0.18	-0.01
$I_7 - I_1$	-0.27	-0.26	-0.10
$I_8 - I_1$	0.07	-0.01	0.17
$I_0 - I_1$	-0.15	-0.70	-0.53

Equilibrium geometrical parameters of BODIPY II in its S_0 ground state obtained at the CAM-B3LYP/cc-pVTZ level of theory without C_{2v} point group symmetry constraints in terms of Cartesian coordinates (Å).

Atom	Х	Y	Ζ
Н	0.000000	2.761008	0.000000
С	1.212318	0.996267	0.000000
С	-1.212318	0.996267	0.000000
С	2.549030	1.479014	0.000000
С	-2.549030	1.479014	0.000000
С	-3.361516	0.354340	0.000000
С	3.361516	0.354340	0.000000
С	-2.527403	-0.786823	0.000000
С	2.527403	-0.786823	0.000000
Ν	-1.246589	-0.396015	0.000000
Ν	1.246589	-0.396015	0.000000
С	0.000000	1.669731	0.000000
С	2.970912	2.912704	0.000000
С	-2.970912	2.912704	0.000000
Н	-4.448857	0.334551	0.000000
Н	4.448857	0.334551	0.000000
С	-2.917277	-2.223374	0.000000
С	2.917277	-2.223374	0.000000
Н	2.593975	3.445617	0.886900
Н	-2.593975	3.445617	0.886900
Н	2.593975	3.445617	-0.886900
Н	-2.593975	3.445617	-0.886900
Н	4.065636	2.997349	0.000000
Н	-4.065636	2.997349	0.000000
Н	-2.496995	-2.729462	0.881311
Н	2.496995	-2.729462	0.881311
Н	-2.496995	-2.729462	-0.881311
Н	2.496995	-2.729462	-0.881311
Н	4.008742	-2.331937	0.000000
Н	-4.008742	-2.331937	0.000000
В	0.000000	-1.323170	0.000000
F	0.000000	-2.126079	1.144240
F	0.000000	-2.126079	-1.144240

Equilibrium geometrical parameters of BODIPY II in its S_1 excited state obtained at the CAM-B3LYP/cc-pVTZ level of theory without C_{2v} point group symmetry constraints in terms of Cartesian coordinates (Å).

Atom	Х	Y	Ζ
Н	0.000000	2.799799	0.000000
С	1.212003	1.003258	0.000000
С	-1.212003	1.003258	0.000000
С	2.564063	1.479752	0.000000
С	-2.564063	1.479752	0.000000
С	-3.363303	0.347051	0.000000
С	3.363303	0.347051	0.000000
С	-2.520761	-0.796154	0.000000
С	2.520761	-0.796154	0.000000
Ν	-1.234172	-0.393060	0.000000
Ν	1.234172	-0.393060	0.000000
С	0.000000	1.712000	0.000000
С	2.963328	2.915484	0.000000
С	-2.963328	2.915484	0.000000
Н	-4.451053	0.315450	0.000000
Н	4.451053	0.315450	0.000000
С	-2.891471	-2.230867	0.000000
С	2.891471	-2.230867	0.000000
Н	2.573288	3.445954	0.885540
Н	-2.573288	3.445954	0.885540
Н	2.573288	3.445954	-0.885540
Н	-2.573288	3.445954	-0.885540
Н	4.056346	3.021693	0.000000
Н	-4.056346	3.021693	0.000000
Н	-2.456763	-2.735669	0.878574
Н	2.456763	-2.735669	0.878574
Н	-2.456763	-2.735669	-0.878574
Н	2.456763	-2.735669	-0.878574
Н	3.980852	-2.358056	0.000000
Н	-3.980852	-2.358056	0.000000
В	0.000000	-1.319251	0.000000
F	0.000000	-2.133017	1.142066
F	0.000000	-2.133017	-1.142066

Franck-Condon	structure	of the	$S_0 \rightarrow S_1$	photoabsorption	spectrum	of BODI	PY II:	transition
energies E (eV)	, intensitie	s I (a.u.) and ass	signment of the vi	bronic stat	tes in term	s of the	quanta of
the S ₁ vibration	al modes c	ompute	d using (CAM-B3LYP/cc-	pVTZ rest	alts for S_0	and S ₁	states.

Transition	E	Ι
0-0	2.841	1.000
14^{1}	2.868	0.106
4^{2}	2.869	0.186
5^2	2.869	0.190
4^4	2.897	0.052
$5^2 4^2$	2.898	0.035
5^{4}	2.898	0.054
24^{1}	2.902	0.076
27^{1}	2.914	0.038
30^{1}	2.926	0.038
39 ¹	2.957	0.057
55 ¹	2.992	0.044
58 ¹	3.006	0.056

Table S15

Franck-Condon structure of the $S_1 \rightarrow S_0$ photoemission spectrum of BODIPY II: transition energies E (eV), intensities I (a.u.) and assignment of the vibronic states in terms of the quanta of the S_0 vibrational modes computed using CAM-B3LYP/cc-pVTZ results for S_0 and S_1 states.

Transition	E	Ι
70^{1}	2.657	0.029
55^{1}	2.686	0.050
38^{1}	2.723	0.049
31 ¹	2.754	0.031
26^{1}	2.767	0.035
24^{1}	2.778	0.064
13^{1}	2.813	0.098
2^{4}	2.829	0.068
$2^2 1^2$	2.829	0.044
1^{4}	2.829	0.065
2^2	2.835	0.212
1^{2}	2.835	0.208
0-0	2.841	1.000

S ₀				S1				
Mode	Assig	nment	ω	Mode	Assig	nment	ω	
ν_1	1	a ₂	23.5	ν'_1	1	b_1	43.7	
v_2	1	b_1	23.9	ν'_2	1	a ₂	62.9	
V 3	2	b_1	43.2	v′3	2	b_1	84.9	
ν_4	2	a ₂	69.9	ν'_4	2	a ₂	114.6	
v_5	3	b_1	93.7	v′5	3	b_1	115.6	
ν_6	3	a ₂	107.6	ν_6'	3	a ₂	138.3	
v_7	4	b_1	109.7	ν'_7	4	b_1	145.3	
ν_8	1	a_1	150.2	ν'_8	1	a_1	149.3	
V9	4	a ₂	150.6	ν'9	4	a ₂	156.0	
ν_{10}	5	a ₂	203.5	ν'_{10}	5	b_1	197.9	
v_{11}	5	b_1	204.5	ν'_{11}	5	a ₂	200.8	
v_{12}	1	b_2	207.5	ν'_{12}	1	b_2	208.2	
v_{13}	2	a_1	223.9	v′ ₁₃	6	b_1	216.9	
v_{14}	6	b_1	252.1	ν'_{14}	2	a_1	221.5	
v_{15}	2	b_2	256.8	v′15	2	b_2	252.7	
v_{16}	3	a_1	302.5	ν'_{16}	3	a_1	299.6	
v_{17}	3	b_2	316.1	ν'_{17}	3	b_2	315.2	
ν_{18}	6	a ₂	321.5	ν'_{18}	6	a ₂	325.3	
ν_{19}	7	a ₂	385.8	v′19	7	a ₂	357.2	
v_{20}	4	a_1	426.1	v′20	7	b_1	379.9	
v_{21}	7	b_1	469.1	ν'_{21}	4	a_1	417.0	
v_{22}	4	b_2	485.4	v′22	8	b_1	466.6	
v ₂₃	8	b_1	496.8	v′23	4	b_2	484.8	
v_{24}	5	a_1	501.3	v′24	5	a_1	494.0	
v_{25}	5	b ₂	593.1	V'25	6	a_1	576.0	
V26	6	a_1	593.3	V'26	5	b_2	580.3	
v_{27}	7	a_1	604.8	v′27	7	a_1	594.8	
v_{28}	9	b_1	668.9	v′ ₂₈	9	b_1	633.3	
V ₂₉	8	a ₂	674.5	V'29	8	a ₂	645.4	
v_{30}	6	b_2	689.8	v′30	8	a_1	690.7	
v_{31}	8	a_1	701.7	v'31	6	b_2	694.8	
v ₃₂	9	a ₂	712.8	v′32	10	b_1	697.0	
V33	10	b_1	752.5	V'33	9	a ₂	698.6	
V34	10	a ₂	834.0	v'34	11	b_1	769.0	
V35	11	b ₁	835.4	V'35	12	b_1	830.4	

Harmonic frequencies ω (cm⁻¹) of the vibrational normal modes of BODIPY II in its S₀ ground state and S₁ excited state obtained at the CAM-B3LYP/cc-pVTZ level of theory.

V ₃₆	7	b_2	850.1	ν'_{36}	10	a_2	834.0
V37	8	b_2	902.5	v′37	7	b_2	865.6
V ₃₈	9	a_1	944.1	v' ₃₈	8	b_2	875.4
V39	12	b_1	957.5	v′39	9	a_1	939.2
v_{40}	9	b_2	993.0	ν'_{40}	10	a_1	984.8
v_{41}	10	a_1	995.6	ν'_{41}	9	b_2	991.7
V ₄₂	11	a_1	1003.9	ν'_{42}	11	a_1	998.9
V43	10	b_2	1008.6	ν'_{43}	10	b_2	1003.0
v_{44}	11	a_2	1052.6	ν'_{44}	13	b_1	1042.1
V45	13	b_1	1054.5	ν'_{45}	11	a_2	1045.1
v_{46}	14	b_1	1058.5	ν'_{46}	12	a_2	1047.8
v_{47}	12	a_2	1058.8	ν'_{47}	14	b_1	1047.9
v_{48}	12	a_1	1090.1	ν'_{48}	12	a_1	1080.5
V49	11	b_2	1126.7	V'49	11	b_2	1082.5
v_{50}	13	a_1	1132.7	v′50	13	a_1	1095.1
v_{51}	15	b_1	1147.9	v′51	15	b_1	1124.7
V ₅₂	12	b_2	1179.5	v′52	12	b_2	1177.7
V53	14	a_1	1189.5	v′53	14	a_1	1183.0
V54	13	b_2	1210.8	v′54	13	b_2	1199.5
V55	15	a_1	1243.8	v′55	15	a_1	1218.1
V56	14	b_2	1262.2	v′56	14	b_2	1265.2
V57	15	b_2	1396.0	v′57	15	b_2	1329.6
v_{58}	16	a_1	1398.6	v′ ₅₈	16	a_1	1334.9
V59	16	b_2	1400.9	V'59	16	b_2	1389.9
v_{60}	17	a_1	1404.7	ν'_{60}	17	a_1	1392.5
v_{61}	17	b_2	1417.4	ν'_{61}	17	b_2	1403.9
V ₆₂	18	a_1	1430.5	v′ ₆₂	18	a_1	1404.7
V ₆₃	18	b_2	1433.6	v′ ₆₃	18	b_2	1418.2
v_{64}	13	a_2	1445.5	ν'_{64}	13	a_2	1431.8
v_{65}	16	b_1	1447.8	v′ ₆₅	16	b_1	1433.9
v_{66}	19	a_1	1456.4	ν'_{66}	19	b_2	1437.4
ν_{67}	14	a_2	1462.3	v′ ₆₇	19	a_1	1444.7
ν_{68}	17	b_1	1462.6	ν'_{68}	14	a_2	1453.1
v_{69}	19	b_2	1473.6	v′ ₆₉	17	b_1	1453.5
v_{70}	20	a_1	1476.2	ν'_{70}	20	a_1	1456.3
v_{71}	20	b_2	1480.5	ν'_{71}	20	b_2	1459.7
v ₇₂	21	a_1	1516.2	v′ ₇₂	21	b_2	1485.9
V73	21	b_2	1527.8	v′ ₇₃	21	a_1	1507.2
v_{74}	22	a_1	1531.6	ν′ ₇₄	22	a_1	1518.0

V75	22	b_2	1604.7	V '75	22	b_2	1523.8
v_{76}	23	a_1	1608.5	V'76	23	a_1	1525.1
v_{77}	24	a_1	1621.3	v′77	23	b_2	1600.1
v_{78}	23	b_2	1681.2	v′ ₇₈	24	a_1	1605.9
V 79	24	b_2	3057.6	V'79	24	b_2	3033.1
v_{80}	25	a_1	3057.9	ν'_{80}	25	a_1	3033.8
v_{81}	25	b_2	3072.9	ν'_{81}	26	a_1	3047.1
v_{82}	26	a_1	3073.2	ν'_{82}	25	b_2	3047.5
v_{83}	15	a_2	3120.2	v′83	18	b_1	3085.5
v_{84}	18	b_1	3120.4	ν'_{84}	15	a_2	3086.0
v_{85}	16	a_2	3145.5	V '85	19	b_1	3104.4
v_{86}	19	b_1	3146.1	ν'_{86}	16	a_2	3106.2
v_{87}	26	b_2	3152.7	ν′ ₈₇	26	b_2	3147.3
v_{88}	27	a_1	3152.8	ν'_{88}	27	a_1	3147.4
v_{89}	27	b_2	3173.0	V '89	27	b_2	3167.7
V90	28	a_1	3173.2	V'90	28	a_1	3167.8
V91	29	a_1	3222.6	v'91	29	a_1	3252.6
V92	28	b_2	3258.7	V '92	28	b_2	3253.2
V93	30	a_1	3258.8	V '93	30	a_1	3253.3

References

81 I.J. Arroyo, R. Hu, G. Merino, B.Z. Tang, E. Peña-Cabrera, The Smallest and One of the Brightest. Efficient Preparation and Optical Description of the Parent Borondipyrromethene System, *J. Org. Chem.*, 2009, 74, 5719–5722. DOI: 10.1021/jo901014w

86 J.J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: $1 \le Z \le 103$, *Atom. Data Nucl. Data*, 1985, **32**, 1–155. DOI: 10.1016/0092-640X(85)90016-6