Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

Atomically Dispersed Pt Inside MOF for Highly Efficient Photocatalytic Hydrogen Evolution

Yunxiao Zhang^{*a*#}, Pengfei Yan^{*a*#}, Yannan Zhou^{*a*}, Qun Xu^{*a*,b*}

^a College of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450052, P.R. China
^b Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, P.R. China
* To whom correspondence should be addressed.
E-mail: <u>qunxu@zzu.edu.cn</u>

Figure S1. UV-vis diffraction spectra of UiO-66 and Pt@UiO-66, inset shows photographs of UiO-66 (a) and Pt@UiO-66 (b).

Figure S2. EDX spectrum of Pt@UiO-66(SC) (a) and Pt@UiO-66(b).

Figure S3. XPS survey scan of Pt@UiO-66(SC) (a) and Pt@UiO-66 (b).

Figure S4. XPS scan of C 1s and O 1s, Pt@UiO-66(SC) (a), Pt@UiO-66(b).

Figure S5. SEM images of Pt@UiO-66(SC) (a-c) and TEM images of Pt@UiO-66(SC) (d-f).

Figure S6. The TEM image of Pt@UiO-66 after three cycles of photocatalytic reactions

Figure S7. The molecular dynamic simulation of platinum acetylacetonate diffusing in CH_2Cl_2 and SC CO₂. the initial structure of SC CO₂ solvent, containing 300 CO₂ molecules and one platinum acetylacetonate molecule(a). Potential energy and temperature evolution in molecular dynamics simulations of SC CO₂ solvent(b). the initial structure of CH_2Cl_2 solvent, containing 200 CH_2Cl_2 molecules and one platinum acetylacetonate molecules and one platinum acetylacetonate molecule(c). Potential energy and temperature evolution in molecular dynamics simulations of CH_2Cl_2 solvent. Green atom: C, yellow atom: O, blue atom: Pt, white atom: H, orange atom: Cl(d).

Figure S8. The molecular dynamics simulation used to explore the microscopic mechanism of platinum acetylacetonate destruction. The key frames(a-e). Potential energy and temperature evolution in molecular dynamics simulation (f).

Table S1. Inductively coupled plasma results for Pt contents in catalysts.

Mass of optalizet	D+ W/+0/
Wass of catalyst	1 t VV t/0
Pt@UiO-66(SC)	0.03%
Pt@UiO-66	0.08%

5 1		1	5		
Mass of catalyst	Dye	Light intensity	Concentration of sacrificial agent	Rate of H ₂ evolution µmol/g/h	Ref.
Pt@UiO-66	RhB	300W Xe lamp	10%TEOA	3871	This
5mg	10ppm	≥420 nm			work
Co-MoS/UiO-66/rGO	EY 20 mg	300W Xe lamp	15%TEOA	2233	[1]
10 mg		≥420 nm			
NiO/UiO-66-NH ₂	EY	300W Xe lamp	3%TEOA	2550	[2]
5 mg	10 mg	≥420 nm			
MoS ₂ /UiO-66/Co ₃ O ₄	EY	300W Xe lamp	15%TEOA	2970	[3]
10 mg	20 mg	≥420 nm			
Pd/UiO-66	EY	5 W LED white	15%TEOA	3600	[4]
10 mg	20 mg	light			
MoS ₂ /UiO-66-NH ₂ /GO	EY	300W Xe lamp	10%TEOA	1069	[5]
SU mg	28 mg EV	N/A	15%TEOA	1866	[6]
20 mg	10 mg	1N/PA	13701LOA	1800	
NiS ₂ /UiO-66	ErB	300W Xe lamp	10%TEOA	1840	[7]
10mg		≥420 nm			
Pt@UiO-66	RhB	300W Xe lamp	10%TEOA	116	[8]
50mg	10ppm	≥420 nm			
Pt/TiO ₂ /UiO-66-NH ₂ /GO	RhB	300W Xe lamp	2%TEOA	2700	[9]
10mg	4.8 ppm	≥420 nm			
Pt@UiO-66-NH ₂	Calix	300W Xe lamp		1528	[10]
25mg	[4] arene	≥420 nm			
Ni ₂ P@UiO-66-NH ₂		300W Xe lamp	3%TEA	409.1	[11]
5mg		≥380 nm			
Pt(PTA)@UiO-66-NH ₂ 35mg		1.9 W white LED	EDTA	56	[12]
Pt/CD@NH ₂ -UiO-66/g-C ₃ N ₄		300W Xe lamp	Sodium	2930	[13]

 Table S2. Summary of reported UiO-66 based photocatalysts.

10mg	≥420 nm	ascorbate		
MoS ₂ /UiO-66/CdS	300W Xe lamp	10%TA	1625	[14]
20mg	≥420 nm			
Pt@UiO-66-NH2 10mg	300W Xe lamp	8.3%TEOA	381.2	[15]

References

- [1] Y. Li, R. Zhang, L. Du, Q. Zhang, W. Wang, Catal. Sci. Technol. 2016, 6, 73.
- [2] C.-C. Shen, Y.-N. Liu, X. Wang, X.-X. Fang, Z.-W. Zhao, N. Jiang, L.-B. Ma, X. Zhou, T.-Y. Cheang, A.-W. Xu, *Dalton Trans.* 2018, 47, 11705.
- [3] K. Fan, Z. Jin, G. Wang, H. Yang, D. Liu, H. Hu, G. Lu, Y. Bi, *Catal. Sci. Technol.* 2018, 8, 2352.
- [4] Z. Jin, H. Yang, Nanoscale Res Lett 2017, 12, 539.
- [5] X. Hao, Z. Jin, H. Yang, G. Lu, Y. Bi, *Applied Catalysis B: Environmental* 2017, 210, 45.
- [6] D. Liu, Z. Jin, Y. Zhang, G. Wang, B. Ma, Journal of Colloid and Interface Science 2018, 529, 44.
- [7] Y. Wang, Y. Yu, R. Li, H. Liu, W. Zhang, L. Ling, W. Duan, B. Liu, J. Mater. Chem. A 2017, 5, 20136.
- [8] J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063.
- [9] L. Ling, Y. Wang, W. Zhang, Z. Ge, W. Duan, B. Liu, *Catal Lett* 2018, 148, 1978.
- [10] Y.-F. Chen, L.-L. Tan, J.-M. Liu, S. Qin, Z.-Q. Xie, J.-F. Huang, Y.-W. Xu, L.-M. Xiao, C.-Y. Su, *Applied Catalysis B: Environmental* 2017, 206, 426.
- [11] K. Sun, M. Liu, J. Pei, D. Li, C. Ding, K. Wu, H. Jiang, Angew. Chem. Int. Ed. 2020, 59, 22749.
- [12] Z. Lionet, T.-H. Kim, Y. Horiuchi, S. W. Lee, M. Matsuoka, *ChemNanoMat* 2019, 5, 1467.
- [13] X. Zhang, H. Dong, X.-J. Sun, D.-D. Yang, J.-L. Sheng, H.-L. Tang, X.-B. Meng, F.-M. Zhang, ACS Sustainable Chem. Eng. 2018, 6, 11563.
- [14] L. Shen, M. Luo, Y. Liu, R. Liang, F. Jing, L. Wu, Applied Catalysis B: Environmental 2015, 166–167, 445.
- [15] X. Ma, L. Wang, Q. Zhang, H. Jiang, Angew. Chem. Int. Ed. 2019, 58, 12175.