A spin-flip variant of the second-order approximate coupled-cluster singles and doubles method

Supplementary Information

Garrette Pauley Paran, Cansu Utku and Thomas-Christian Jagau Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

1 Cartesian geometries

```
$comment
ortho-benzyne, triplet state, Cartesian geometry in Angstrom
Nuclear Repulsion Energy = 186.77967739 a.u.
$end
```

```
$molecule
03
Η
     2.476058 0.000000
                         -0.120773
С
      1.397826 0.000000 -0.115266
С
     0.690428 0.000000
                          1.085671
Η
     1.229929 0.000000
                          2.017939
С
    -0.690428 0.000000
                          1.085671
Η
    -1.229929 0.000000
                          2.017939
С
    -1.397826 0.000000
                        -0.115266
Η
    -2.476058 0.000000 -0.120773
С
    -0.692326 0.000000 -1.284303
С
     0.692326 0.000000 -1.284303
$end
```

\$comment meta-benzyne, triplet state, Cartesian geometry in Angstrom Nuclear Repulsion Energy = 187.20365817 a.u. \$end \$molecule 03 Η -2.14689 0.000000 1.16892 С -1.21423 0.000000 0.63214 С 0.00000 0.000000 1.31213 0.00000 0.000000 2.39042 Η С 1.21423 0.000000 0.63214 Η 2.14689 0.000000 1.16892 С 1.15425 0.000000 -0.73302 С $0.00000 \quad 0.000000 \quad -1.47122$ Η 0.00000 0.000000 -2.54931 С -1.15425 0.000000 -0.73302 \$end \$comment para-benzyne, triplet state, Cartesian geometry in Angstrom Nuclear Repulsion Energy = 187.10951165 a.u. \$end \$molecule 03 Н 2.144994 -1.255165 0.000000 С 1.222802 -0.697850 0.000000 С 1.222802 0.697850 0.000000 Η 2.144994 1.255165 0.000000 0.000000 1.308815 0.000000 С С -1.222802 0.697850 0.000000 Η -2.144994 1.255165 0.000000 С -1.222802 -0.697850 0.000000 Η -2.144994 -1.255165 0.000000

0.000000

\$end

0.000000 -1.308815

С

\$comment
CUAQAC02, triplet state, Cartesian geometry in Angstrom
Nuclear Repulsion Energy = 3174.87801338 a.u.
\$end

\$molecule

03

~			
Cu	-0.4475643610	-0.0120963053	-1.2187131839
Cu	0.4475643610	0.0120963053	1.2187131839
С	-1.5516738597	-1.9174459710	0.6216855123
С	1.5516738597	1.9174459710	-0.6216855123
С	-2.4404422951	-3.0767823055	0.9891436674
С	2.4404422951	3.0767823055	-0.9891436674
С	1.7884683766	-1.6766996168	-0.6862923408
С	-1.7884683766	1.6766996168	0.6862923408
С	2.8741200254	-2.6422066929	-1.0840583784
С	-2.8741200254	2.6422066929	1.0840583784
H	-1.8293382510	-3.9790509196	1.0248530293
H	1.8293382510	3.9790509196	-1.0248530293
Н	-3.2258364073	-3.2142752931	0.2520287447
Н	3.2258364073	3.2142752931	-0.2520287447
H	-2.8627428887	-2.9234745771	1.9793067222
H	2.8627428887	2.9234745771	-1.9793067222
H	2.9887046283	-3.4087941897	-0.3208559893
H	-2.9887046283	3.4087941897	0.3208559893
Н	2.6596867698	-3.0896360878	-2.0494344473
H	-2.6596867698	3.0896360878	2.0494344473
Н	3.8148426588	-2.0943168142	-1.1445126369
Н	-3.8148426588	2.0943168142	1.1445126369
Н	-2.3601778555	0.6855733244	-2.7932158752
Н	2.3601778555	-0.6855733244	2.7932158752
Н	-2.2881709015	-0.8355308500	-2.8370271162
H	2.2881709015	0.8355308500	2.8370271162
0	-1.6039546736	-1.4940498512	-0.5633853188
0	1.6039546736	1.4940498512	0.5633853188
0	-0.9814838837	1.3115042001	1.5765454220
0	0.9814838837	-1.3115042001	-1.5765454220
0	0.8033864073	1.4688139814	-1.5261581319
0	-0.8033864073	-1.4688139814	1.5261581319
0	-1.7814477378	1.2892257086	-0.5128288755
0	1.7814477378	-1.2892257086	0.5128288755
0	-1.7940678183	-0.0428536234	-3.0630837058
0	1.7940678183	0.0428536234	3.0630837058
\$end			

\$comment

PATFIA, triplet state, Cartesian geometry in Angstrom Nuclear Repulsion Energy = 2804.51624162 hartrees \$end

\$molecule

23 Cu 1.7087227025 -0.17928349030.1608894488 Cu -1.7153965803-0.16214529840.1726197439 0 1.1510877085 1.5186111353 0.8977506371 С 0.0259987040 2.0401407554 1.0578341471 Η 0.0146802968 3.0227985586 1.5416296736 0 -1.08635801771.5872962809 0.7045453660 0 -0.0071181378 -1.0311286136 0.5412325888 С -2.27560092080.0030057456 1.2155946223 Η 0.9333350080 -2.41764209551.7706126488 Η -0.7895151328-2.3283409390 1.9661011991 Η -0.1154330288-3.1118706257 0.5180707573 N -2.7336423434-1.9056433478-0.1370361317Η -2.5876357917 -2.5933835980 0.5932900883 Η -2.3832137993 -2.3341014358-0.9887331535С -4.1779826589 -1.6063992118 -0.2812385809 Η -4.5995491335-1.50888822490.7167569764 -0.7819519177 Η -4.7040744188-2.4177316843 С -0.3226480645 -1.0701279691 -4.3021627019 Н -3.9509652816-0.4827683024-2.0904271954Η -5.3399705359 0.0104030531 -1.1255563887Ν -3.45580635850.7337142466 -0.4641119051 С -3.18777993221.7885317544 -1.4640335437Η -2.59341964162.5748372585 -1.0094502121Η -2.6523323100 1.3669152040 -2.3133245196Η -4.12783075422.2120268177 -1.8243815287С -4.13375422381.3399052215 0.7052696848 Η -3.48224534472.0864572595 1.1483079253 Η -4.3596974913 0.5819780017 1.4521592151 Η -5.0663404102 0.3869947656 1.8100631123 Ν 2.6201735674 -1.8968553219-0.4678369142Η 2.4357916814 -2.7001126866 0.1223649203 Η 2.2456395244 -2.1388704123-1.3807648385С 4.0798535321 -1.6552639611 -0.5721153213Η 4.5006453777 -1.72819825600.4282594133 Η 4.5713720983 -2.4004889581 -1.1950634155С 4.2637661191 -0.2692572306 -1.1472915868

Н	3.8892250618	-0.2476605094	-2.1715119771
Н	5.3175409713	0.0140447135	-1.1748259443
Ν	3.4875316595	0.7156442408	-0.3589983072
С	3.2835211482	1.9414419703	-1.1598403187
Н	2.7641842796	2.6793528630	-0.5581710474
Н	2.6879045539	1.7117465834	-2.0420692295
Н	4.2450530380	2.3463113052	-1.4814884068
С	4.1992063212	1.0681887976	0.8912164078
Н	3.5810602997	1.7434307266	1.4745666489
Н	4.3989122355	0.1783492095	1.4853492250
Н	5.1497006857	1.5522941282	0.6575385510
\$end			

2 Artificial multiplet splittings

Table 2. Artificial energy splittings $E(M_S = 0) - E(M_S = 1)$ in eV between high-spin and low-spin components of the triplet states of various molecules.

	С	H_2	NH	H_2^{+}	Sil	H_2	PI	H_2^{+}	-
	UHF	ROHF	UHF	ROH	F UHF	ROHF	UHF	ROHF	-
SF-CCSD	0.0129	0.0000	0.0198	0.000	0 0.0044	0.0000	0.0066	0.0000	-
SF-CC2	0.1086	0.0431	0.1635	0.048	6 0.0534	0.0342	0.0787	0.0466	
SF-RI-CC2	0.1087	0.0432	0.1637	0.048	8 0.0539	0.0349	0.0766	0.0469	
SF-ADC(2)	0.1298	-0.1127	0.2021	-0.212	0.0531	-0.0414	0.0825	-0.0602	
$SF-CIS(D_{\infty})$	0.1357		0.2087		0.0613		0.0910		
					-				
	Ν	Η	Ν	IF OH ⁺		\mathbf{H}^+	O_2		_
	UHF	ROHF	UHF	ROHI	F UHF	ROHF	UHF	ROHF	
SF-CCSD	0.0144	0.0000	0.0224	0.000	0 0.0146	0.0000	0.0339	0.0000	-
SF-CC2	0.1365	0.0580	0.1552	0.074	1 0.1455	0.0559	0.2482	0.1901	
SF-RI-CC2	0.1366	0.0582	0.1561	0.074	9 0.1457	0.0559	0.2502	0.1921	
SF-ADC(2)	0.1654	-0.1555	0.1108	-0.303	0.1756	-0.1977	0.3859	-0.1736	
$SF-CIS(D_{\infty})$	0.1720		0.2153		0.1813		0.4893		
									-
	$o-C_6H_4$	$m-C_6H_4$	$p-C_6H_4$		O_3	$^{3}\mathrm{B}_{1}$	$^{3}A_{2}$	${}^{3}\mathrm{B}_{2}$	$^{3}A_{1}$
SF-CCSD	0.0224	0.1744	0.0217		SF-CCSD	0.0617	0.0858	0.0376	0.0612
SF-CC2	0.1187	0.3374	0.1187		SF-CC2	0.2986	0.3100	0.4753	0.3435
SF-RI-CC2	0.1188	0.3375	0.1188		SF-ADC(2)	0.2694	0.1477	0.2227	0.3702
SF-ADC(2)	0.1031	0.4202	0.1094	_					

3 Wave function analysis

	Basis	EOM-SI	F-CCSD	SF-CC2		SF-R	SF-RI-CC2		DC(2)	$SF-CIS(D_{\infty})$
		UHF	ROHF	UHF	ROHF	UHF	ROHF	UHF	ROHF	UHF
CH_2	cc-pVQZ	0.8692	-0.8723	-0.8701	-0.8726	0.8701	-0.8726	0.8697	0.9316	0.8607
		0.3160	0.3072	-0.3112	0.3033	0.3112	0.3033	-0.3123	0.3211	0.3292
NH_2^+	cc- $pVQZ$	-0.8134	0.8173	-0.8079	-0.8114	-0.8079	-0.8114	0.8084	0.8443	0.7897
		-0.4732	-0.4745	-0.4921	0.4934	-0.4922	0.4935	0.4912	0.5172	0.5312
SiH_2	cc- $pVQZ$	-0.9100	0.9102	-0.9171	0.9173	0.9171	0.9173	0.9165	-0.9592	0.9137
		-0.1991	0.1955	-0.1961	0.1927	0.1961	0.1927	-0.1958	-0.2035	0.2050
PH_2^+	cc- $pVQZ$	-0.9410	0.9412	-0.9465	-0.9466	0.9465	0.9466	0.9464	0.9607	0.9421
		-0.1658	0.1626	0.1776	-0.1785	-0.1777	0.1785	0.1773	0.2054	0.2274

Table 3. Largest two amplitudes obtained in EOM-SF-CCSD, SF-CC2, SF-ADC(2), and SF-CIS(D_{∞}) calculations on the singlet states of various molecules.

Molecule	Basis	EOM-SF-CCSD	SF-CC2	SF-RI-CC2	SF-ADC(2)
$o-C_6H_4$	cc- $pVQZ$	0.8325	0.8429	0.8429	0.8383
		-0.2138	-0.2161	-0.2161	-0.2161
$m-C_6H_4$	cc-pVQZ	0.7726	-0.7852	0.7852	0.7773
		0.2778	-0.2675	0.2674	0.2774
$p-C_6H_4$	cc-pVQZ	0.6551	0.6786	-0.6786	0.6636
		0.4992	0.4741	-0.4741	-0.4929

Molecule / State	Basis	EOM-SF-CCSD	SF-CC2	SF-ADC(2)
$O_3 / {}^3A_1$	cc-pVDZ	-0.9546	-0.9164	0.9304
		-0.1034	-0.2029	0.1536
$O_3 / {}^3A_2$	cc- $pVDZ$	-0.9336	0.9408	-0.9454
		-0.0934	0.0821	-0.1172
$O_3 / {}^3B_1$	cc- $pVDZ$	0.9342	0.9288	-0.9374
		0.1155	0.1504	0.1388
$O_3 / {}^3B_2$	cc- $pVDZ$	-0.9405	0.9440	0.9517
		-0.1256	-0.0855	-0.0980

R/Å	EOM-SF-CCSD		SF-0	CC2	SF-ADC(2)		
		r	eference s	ference state = ${}^{3}A_{1}$			
1.30	-0.9546	-0.1034	-0.9164	-0.2029	0.9304	0.1536	
1.35	-0.9432	0.1444	-0.8748	0.2867	-0.9061	0.2087	
1.40	0.9253	-0.2001	0.8070	-0.3867	0.8710	0.2749	
1.45	-0.8999	-0.2667	-0.7091	-0.4860	0.8216	0.3459	
1.50	0.8660	0.3394	-0.5884	-0.5592	-0.7595	0.4062	
1.55	-0.8229	0.4136	0.5901	-0.4639	-0.6957	0.4365	
1.60	-0.7709	0.4841	-0.5804	0.3781	-0.6510	0.4165	
1.65	-0.8147	0.4249	0.5421	0.4286	0.6420	-0.4538	
		r	eference s	$tate = {}^{3}A$	-2		
1.30	-0.9336	-0.0934	0.9408	0.0821	-0.9454	-0.1172	
1.35	0.9231	-0.1238	0.9344	0.0937	0.9379	-0.1723	
1.40	0.9096	-0.1663	0.9276	0.1397	0.9235	0.2504	
1.45	0.8928	0.2231	-0.9178	0.2074	-0.8977	-0.3424	
1.50	0.8725	0.2926	-0.9006	0.2936	0.8622	0.4309	
1.55	0.8483	0.3681	0.8727	0.3861	0.8244	0.5033	
1.60	0.8215	-0.4403	0.8376	-0.4691	0.7910	0.5567	
1.65	0.7631	0.3795	0.8028	0.5336	-0.7643	0.5945	
		r	eference s	$tate = {}^{3}E$	B ₁		
1.30	0.9342	0.1155	0.9288	0.1504	-0.9374	0.1388	
1.35	0.9223	0.1471	-0.9134	-0.1911	-0.9288	0.1683	
1.40	-0.9047	-0.1872	-0.8934	-0.2358	-0.9201	0.1944	
1.45	0.8795	0.2382	-0.8703	-0.2821	0.9109	-0.2143	
1.50	-0.8438	-0.3044	0.8451	0.3325	0.8969	-0.2383	
1.55	0.7908	0.3905	-0.8114	-0.3991	0.8620	-0.3066	
1.60	0.7142	0.4896	0.7537	0.4918	0.7725	0.4484	
1.65	-0.7154	0.5429	0.6583	0.5978	0.6340	0.5875	
		r	eference s	$tate = {}^{3}E$	B ₂		
1.30	-0.9405	-0.1256	0.9440	-0.0855	0.9517	-0.0980	
1.35	0.9341	-0.1404	-0.9363	0.0906	0.9480	-0.1077	
1.40	-0.9264	0.1574	-0.9267	0.0977	0.9445	-0.1203	
1.45	0.9160	-0.1817	-0.9139	0.1124	0.9404	-0.1376	
1.50	0.9012	0.2182	-0.8964	-0.1397	0.9348	-0.1599	
1.55	-0.8800	0.2690	-0.8724	-0.1824	0.9270	-0.1856	
1.60	0.8499	0.3328	-0.8396	-0.2401	0.9169	-0.2110	
1.65	0.8609	0.2451	0.8735	0.0839	-0.8636	0.2067	

Table 4. Largest two amplitudes obtained in EOM-SF-CCSD, SF-CC2, and SF-ADC(2) calculations on the ground state of ozone at different bond lengths and a bond angle of 142.76°. The cc-pVDZ basis set was used in all calculations.

4 Potential energy curves of H_2 and HF

Table 5.	Pote	ential	energy	curve	e of	the g	ground	state	e of l	$H_2 \operatorname{con}$	ipute	d wit	th va	arious	spin-	flip
methods	and t	the co	-pVTZ	basis	set.	All	energi	es in	a.u.	relativ	ve to	the e	energ	y at (0.75Å	•
. 0																

$\mathrm{R}/\mathrm{\AA}$	EOM-SF-CCSD	SF-CC2	SF-ADC(2)	$SF-CIS(D_{\infty})$
0.50	0.07143154	0.07502832	0.07515472	0.07510728
0.60	0.01878329	0.02064839	0.02070641	0.02067075
0.75	0.00000000	0.00000000	0.00000000	0.00000000
0.95	0.01883390	0.01722292	0.01722460	0.01729710
1.20	0.06023365	0.05707509	0.05711329	0.05726513
1.40	0.09216351	0.08777579	0.08783516	0.08800553
1.75	0.13389682	0.12741870	0.12749589	0.12757175
2.00	0.15184623	0.14421101	0.14429387	0.14425444
2.50	0.16762139	0.15885055	0.15894010	0.15875393
3.00	0.17157542	0.16253919	0.16263107	0.16240828
3.50	0.17244344	0.16335589	0.16344847	0.16321944
4.00	0.17262618	0.16352728	0.16362001	0.16339004
4.50	0.17266584	0.16356373	0.16365641	0.16342638
5.00	0.17267595	0.16357269	0.16366543	0.16343532
5.50	0.17267921	0.16357542	0.16366833	0.16343806
6.00	0.17268044	0.16357639	0.16366916	0.16343902

Table 6. Potential energy curve of the ground state of HF computed with various spin-flip methods and the 6-31G^{**} basis set. All energies in a.u. relative to the energy at 0.90 Å. Full CI results from A. Dutta, C.D. Sherrill, J. Chem. Phys. 118, 1610 (2003).

R/A	Å Full CI	EOM-SF-CCSD	SF-CC2	SF-ADC(2)	$SF-CIS(D_{\infty})$
0.7	0 0.101443	0.10035112	0.09752820	0.09715801	0.09439159
0.7	5 0.052102	0.05124284	0.04872715	0.04845883	0.04621245
0.8	0 0.022353	0.02176368	0.01980438	0.01964028	0.01803618
0.8	5 0.006366	0.00606571	0.00493995	0.00486864	0.00401877
0.9	0.000000 0	0.00000000	0.00000000	0.00000000	0.00000000
0.9	5 0.000309	0.00062277	0.00203325	0.00207925	0.00300871
1.0	0 0.005195	0.00585188	0.00585188	0.00899087	0.01091500
1.1	0 0.023150	0.02465898	0.03156242	0.03158706	0.03561252
1.2	0 0.046273	0.04895138	0.05980061	0.05960304	0.06558355
1.3	0 0.070541	0.07471935	0.08882961	0.08811348	0.09532063
1.4	0 0.093800	0.09972218	0.11561932	0.11403606	0.12121307
1.6	0 0.133477	0.14291050	0.15632525	0.15242944	0.15630300
1.8	0 0.162200	0.17356837	0.17896971	0.17324800	0.17333151
2.0	0 0.180725	0.19098974	0.18954705	0.18295133	0.18087383
2.2	0 0.191535	0.19871823	0.19419053	0.18726597	0.18421451
2.4	0 0.197425	0.20175181	0.19626411	0.18922523	0.18576186
2.6	0 0.200510	0.20297782	0.19535583	0.18820083	0.18651669
2.8	0 0.202094	0.20351724	0.19484491	0.18768353	0.18690155
3.0	0 0.202904	0.20368123	0.19462321	0.18745852	0.18711014
3.2	0 0.203323	0.20362859	0.19454820	0.18738155	0.18723227
3.4	0 0.203542	0.20362388	0.19453738	0.18736958	0.18730745
3.6	0 0.203656	0.20363527	0.19454748	0.18737906	0.18735348
3.8	0 0.203714	0.20364782	0.19455981	0.18739109	0.18738023
4.0	0 0.203742	0.20365670	0.19456868	0.18739982	0.18739466

5 Potential energy surface of O₃

Table 7. Potential energy curve of the ground state of O_3 computed with various methods and the cc-pVDZ basis set at a bond angle of 142.76°. All values in a.u.

R(OO)/Å	CCSD	CC2	MP2
1.30	-224.84003083	-224.90745501	-224.86138149
1.35	-224.83131580	-224.91798781	-224.85322089
1.40	-224.81738882	-224.92689106	-224.83510604
1.45	-224.80001462	-224.93693093	-224.80558339
1.50	-224.78062443	-224.95179257	-224.76210807
1.55	-224.76057832	-224.98257526	-224.70425022
1.60	-224.74114908	-225.05292901	-224.63861562
1.65	-224.72314464	no convergence	-224.57662771

Table 8. Potential energy curve of the ground state of O_3 computed with various spin-flip methods and the cc-pVDZ basis set at a bond angle of 142.76°. The ${}^{3}A_{1}$ state is used as reference. All values in a.u.

$\mathbf{D}(\mathbf{O}\mathbf{O})/\hat{\mathbf{i}}$	FOLGE CCCP	ap aga	
R(OO)/A	EOM-SF-CCSD	SF-CC2	SF-ADC(2)
1.30	-224.82905942	-224.91984306	-224.86240974
1.35	-224.81948218	-224.92983262	-224.84250170
1.40	-224.80454769	-224.93472880	-224.80620359
1.45	-224.78627773	-224.93843324	-224.77078248
1.50	-224.76598610	-224.94212315	-224.73795417
1.55	-224.74480481	-224.94585556	-224.70721442
1.60	-224.72391173	-224.94942073	-224.67795694
1.65	-224.70204970	-224.95350420	-224.65094848

R(OO)/Å	EOM-SF-CCSD	SF-CC2	SF-ADC(2)
1.30	-224.84101525	-224.87024346	-224.82660746
1.35	-224.83242849	-224.86782622	-224.80806855
1.40	-224.81865531	-224.85645635	-224.77535900
1.45	-224.80153744	-224.83485702	-224.73117411
1.50	-224.78245201	-224.80183159	-224.68152310
1.55	-224.76245205	-224.75877604	-224.63428133
1.60	-224.74241844	-224.71124350	-224.59802988
1.65	-224.71529789	-224.66640011	-224.57696800

Table 9. Potential energy curve of the ground state of O_3 computed with various spin-flip methods and the cc-pVDZ basis set at a bond angle of 142.76°. The 3B_1 state is used as reference. All values in a.u.

Table 10. Potential energy curve of the ground state of O_3 computed with various spin-flip methods and the cc-pVDZ basis set at a bond angle of 142.76°. The 3B_2 state is used as reference. All values in a.u.

R(OO)/Å	EOM-SF-CCSD	SF-CC2	SF-ADC(2)
1.30	-224 81013041	-224 85600234	-224 80243383
1.00	224.80600368	221.00000201	221.00219909
1.55	-224.00005500	224.00155515	-224.75155022 -224.77181557
1.40	-224.79040013	-224.00211044	-224.77101007
1.40	-224.16293446	-224.00700000	-224.74047002
1.50	-224.70074201	-224.85027252	-224.72040007
1.55	-224.74894536	-224.84001436	-224.69644394
1.60	-224.73048353	-224.82759184	-224.67564300
1.65	-224.70876342	-224.85355225	-224.65835592

R(OO)/Å SF-ADC(2)EOM-SF-CCSD SF-CC2 1.30-224.85322174-224.79146178-224.83833856 1.35-224.82861528 -224.83827159 -224.762426961.40-224.81355485-224.81310215 -224.728018561.45-224.79596092-224.78252839-224.697168541.50-224.77854726-224.75149353-224.674209251.55-224.76324577-224.72356858-224.658899241.60-224.75076181-224.70065855-224.649307681.65-224.71831906-224.68319601-224.64359336

Table 11. Potential energy curve of the ground state of O_3 computed with various spin-flip methods and the cc-pVDZ basis set at a bond angle of 142.76°. The 3A_2 state is used as reference. All values in a.u.

Table 12. Potential energy curve of the ground state of O_3 computed with CC2 and SF-CC2 using the cc-pVDZ basis set at a bond angle of 116.78°. All values in a.u.

R(OO)/Å	CC2	SF-CC2 $(^{3}A_{1})$	SF-CC2 $(^{3}B_{1})$	SF-CC2 $(^{3}B_{2})$	SF-CC2 $(^{3}A_{2})$
1.30	-224.94116740	-224.95354322	-224.90407910	-224.84994937	-224.90041017
1.35	-224.94724247	-224.95624756	-224.89873225	-224.85799518	-224.89203945
1.40	-224.95030067	-224.95254922	-224.88391154	-224.85994699	-224.87171637
1.45	-224.95204936	-224.94592076	-224.85803426	-224.85716136	-224.83944723
1.50	-224.95297987	-224.93761663	-224.82126925	-224.85047502	-224.79954401
1.55	-224.95117249	-224.92862259	-224.77645855	-224.84066904	-224.75799859
1.60	-224.94251384	-224.92004328	-224.72873630	-224.82844599	-224.72022530

R(OO)/Å	CCSD		CC2		CCSD		CC2	
	$ T_1 ^2$	$ T_2 ^2$	$ T_1 ^2$	$ T_2 ^2$	$ T_1 ^2$	$ T_2 ^2$	$ T_1 ^2$	$ T_2 ^2$
		$^{1}A_{1}$	state			$^{3}A_{1}$	state	
1.30	0.0545	0.2187	0.1369	0.3101	0.0404	0.2302	0.0990	0.4079
1.35	0.0862	0.2386	0.2503	0.3822	0.0953	0.2543	0.2009	0.4843
1.40	0.1374	0.2612	0.4705	0.4972	0.1894	0.2879	0.3819	0.5825
1.45	0.2205	0.2887	0.9186	0.7152	0.2857	0.3266	0.6034	0.7003
1.50	0.3554	0.3258	1.9045	1.2480	0.3762	0.3697	0.8642	0.8409
1.55	0.5654	0.3820	4.5665	3.3119	0.4607	0.4174	1.1727	1.0120
1.60	0.8621	0.4723	13.3890	17.5670	0.5491	0.4699	1.5583	1.2357
1.65	1.2334	0.6165			0.2288	0.3624	2.1089	1.5784
		$^{3}\mathrm{B}_{1}$	state			$^{3}\mathrm{B}_{2}$	state	
1.30	0.0555	0.1860	0.0902	0.2277	0.0827	0.3130	0.1444	0.3362
1.35	0.0959	0.2038	0.1556	0.2583	0.1233	0.3137	0.2384	0.3924
1.40	0.1646	0.2269	0.2585	0.2922	0.1830	0.3222	0.3879	0.4682
1.45	0.2656	0.2582	0.3886	0.3243	0.2553	0.3391	0.6010	0.5731
1.50	0.3939	0.3006	0.5103	0.3436	0.3259	0.3635	0.8737	0.7171
1.55	0.5393	0.3560	0.5909	0.3410	0.3823	0.3933	1.1965	0.9079
1.60	0.6752	0.4220	0.6044	0.3141	0.4191	0.4258	1.5628	1.1540
1.65	0.1774	0.3235	0.5267	0.2642	0.3232	0.4682	1.0775	1.1464
		$^{3}A_{2}$	state					
1.30	0.1301	0.2133	0.1610	0.2246				
1.35	0.1975	0.2286	0.2292	0.2344				
1.40	0.2719	0.2462	0.2938	0.2379				
1.45	0.3316	0.2643	0.3349	0.2344				
1.50	0.3634	0.2819	0.3399	0.2344				
1.55	0.3673	0.2988	0.3086	0.2050				
1.60	0.3482	0.3137	0.2536	0.1815				
1.65	0.4289	0.3345	0.1936	0.1574				

Table 13. Norms of amplitude vectors from CCSD and CC2 calculations for various states of O_3 . Computed using the cc-pVDZ basis set at a bond angle of 142.76°.

R(OO)/Å	$^{1}A_{1}$ state		$^{3}A_{1}$ state		$^{3}B_{1}$ state		${}^{3}B_{2}$ state		$^{3}A_{2}$ state	
	$ T_1 ^2$	$ T_2 ^2$	$ T_1 ^2$	$ T_2 ^2$	$ T_1 ^2$	$ T_2 ^2$	$ T_1 ^2$	$ T_2 ^2$	$ T_1 ^2$	$ T_2 ^2$
1.30	0.0749	0.2921	0.1199	0.4296	0.0687	0.2208	0.1009	0.3115	0.0874	0.2194
1.35	0.1242	0.3449	0.2402	0.5066	0.1180	0.2465	0.1514	0.3511	0.1499	0.2415
1.40	0.2111	0.4153	0.4313	0.6032	0.2096	0.2743	0.2310	0.3987	0.2521	0.2623
1.45	0.3706	0.5175	0.6631	0.7185	0.3469	0.3013	0.3533	0.4579	0.3713	0.2768
1.50	0.6738	0.6838	0.9368	0.8571	0.4886	0.3198	0.5253	0.5336	0.4525	0.2786
1.55	1.2307	0.9780	1.2581	1.0277	0.5800	0.3208	0.7391	0.6296	0.4619	0.2640
1.60	2.0816	1.4641	1.6385	1.2455	0.5812	0.2979	0.9808	0.7475	0.4035	0.2344

Table 14. Norms of amplitude vectors from CC2 calculations for various states of O_3 . Computed using the cc-pVDZ basis set at a bond angle of 116.78°.

Figure 1. Potential energy curves of the ground state of ozone at a bond angle of 116.78° computed with conventional CC2 and SF-CC2 using the ${}^{3}A_{1}$, ${}^{3}B_{1}$, ${}^{3}B_{2}$, and ${}^{3}B_{2}$ states as reference. The cc-pVDZ basis was used for all calculations.

Figure 2. Left: Potential energy curves of the ground state of ozone at a bond angle of 142.76° computed with EOM-SF-CCSD, SF-CC2, and SF-ADC(2) using the ${}^{3}B_{1}$ state (upper panel) and the ${}^{3}B_{2}$ state (lower panel) as reference. Right: Norms of single and double amplitude vectors from corresponding CCSD and CC2 calculations. The cc-pVDZ basis is used in all calculations.