Supporting Information For

Two-dimensional Be₂Al and Be₂Ga monolayer: an anti-van't Hoff/Le Bel planar hexacoordinate bonding and superconductivity

Hai-xia Li,^{a#} Meng-hui Wang,^{a#} Quan Li,^b and Zhong-hua Cui*a,c

^aInstitute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China

E-mail: zcui@jlu.edu.cn

^bState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130023, People's Republic of China

^cKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130023, China

[#]These authors contributed equally to this work

Figure S1. Phonon dispersion of the Be₂B, Be₂In, and Be₂Tl monolayers.

Figure S2. The crystal structure of Ae_2M (Ae = Mg, Zn; M = Al, Ga) monolayer and the corresponding phonon dispersion curves.

Figure S3. Top and side views of low-lying structures of a) Be₂Al and b) Be₂Ga 2D monolayers confirmed by particle swarm searches. The green, yellow, and blue balls represent Be, Al, and Ga atoms, respectively.

Figure S4. The crystal structure and phonon dispersion curves of Be_2M (M = Al, Ga) bilayer.

Figure S5. Phonon dispersion spectra of Be_2Al under strain from -0.5% to 0%.

Figure S6. Phonon dispersion spectra of Be_2Ga under strain from -2.4% to 0.6%.

Figure S7. (a) Phonon dispersion with electron-phonon coupling strength, (b) phonon density of states (PhDOS), (c) Eliashberg spectral function $\alpha^2 F(\omega)$ and the overall electron-phonon coupling strength $\lambda(\omega)$ of Be₂Al under the strain of -0.5%.

Figure S8. (a) Phonon dispersion with electron-phonon coupling strength, (b) phonon density of states (PhDOS), (c) Eliashberg spectral function $\alpha^2 F(\omega)$ and the overall electron-phonon coupling strength $\lambda(\omega)$ of Be₂Ga under the strain of -2.4%.

Figure S9. Plane-averaged charge density difference along the vertical z-direction to the Be_2M (M =Al, Ga) monolayer and the Ca_2N substrate.

Figure S10. (a) Phonon dispersion with electron-phonon coupling strength, (b) Eliashberg spectral function $\alpha^2 F(\omega)$ and the overall electron-phonon coupling strength $\lambda(\omega)$ of the Be₂Al-Ca₂N bilayer.

Figure S11. Phonon dispersion of the Be₂Ga-Ca₂N bilayer.