

- 5 Fig S2: Size distribution histrograms of (a) EG-Ni; (b) S-Ni.
- 6
- 7



- 8
- 9 Fig S3: FESEM of A-EG-Ni.
- 10



16 Figure S5: The N<sub>2</sub> adsorption/desorption isotherm curves of (a) EG-Ni and A-EG-Ni,

17 (b) S-Ni and A-S-Ni.



18

19 Fig S6: Full scan XPS spectra of EG-Ni and S-Ni.

- 20
- 21
- 22



42 Table S1: The corresponding parameters of the elements in the insert equivalent circuit

| Electrode          | $R_{s}(\Omega)$ | $R_p$ (Ω) | $R_{ct}(\Omega)$ |
|--------------------|-----------------|-----------|------------------|
| 40% Pt/C           | 4.703           | 0.553     | 2.490            |
| EG-Ni (loading x4) | 4.366           | 1.686     | 1.465            |
| EG-Ni              | 4.659           | 2.694     | 11.540           |
| S-Ni               | 4.965           | 5.092     | 16.240           |

43 of the 40% Pt/C, EG-Ni (loading x4), EG-Ni and S-Ni electrode.

**Table S2:** Comparison of HER performance of EG-Ni with some Ni-based catalyst.

| catalyst                                                      | Overpot<br>ential j <sub>10</sub><br>(mV) | Tafel<br>Slope<br>(mV/de<br>c) | Loading<br>(mg/cm²) | Electrolyte                             | Scan<br>rate<br>(mV/s) | Ref.         |
|---------------------------------------------------------------|-------------------------------------------|--------------------------------|---------------------|-----------------------------------------|------------------------|--------------|
| EG-Ni                                                         | <mark>85.9</mark>                         | <mark>91.4</mark>              | 4                   | 1 M KOH                                 | 5                      | This<br>work |
| NiCu@C-1                                                      | 94                                        | 74                             | 0.38                | 1 M KOH                                 | 10                     | 1            |
| Ni-rGO <sub>1.0</sub>                                         | 36                                        | 77                             | /                   | 1 M KOH                                 | 5                      | 2            |
| Ni-Ni(OH) <sub>2</sub>                                        | 72                                        | 43                             | /                   | 1 M KOH                                 | 5                      | 3            |
| MoS <sub>2</sub> /(CoNi<br>@Gr)                               | 150                                       | 66                             | 0.5                 | 0.5 M<br>H <sub>2</sub> SO <sub>4</sub> | 5                      | 4            |
| np-Ni <sub>3</sub> N                                          | 50                                        | /                              | 0.32                | 0.1 M KOH                               | 10                     | 5            |
| Ni-N <sub>0.19</sub>                                          | 42                                        | 125                            | /                   | 1 M KOH                                 | 3                      | 6            |
| Ni <sub>SA</sub> Fe <sub>SA</sub> Ni <sub>50</sub><br>Fe/CNT  | 64                                        | 48.1                           | 2                   | 1 M KOH                                 | 5                      | 7            |
| Ni <sub>3</sub> Fe <sub>0.9</sub> Cr <sub>0.1</sub> /<br>CACC | 128                                       | 120                            | /                   | 1 М КОН                                 | 10                     | 8            |

## 48 References

- 49
- 50
- 51 [1] Shen, Y.; Zhou, Y.; Wang, D.; Wu, X.; Li, J.; Xi, J. Adv. Energy. Mater. 2018, 8, (2), 1701759.
- 52 [2] Wang, L.; Li, Y.; Xia, M.; Li, Z.; Chen, Z.; Ma, Z.; Qin, X.; Shao, G. J. Power Sources 2017, 347,
  53 220-228.
- 54 [3] Zhong, W.; Li, W.; Yang, C.; Wu, J.; Zhao, R.; Idrees, M.; Xiang, H.; Zhang, Q.; Li, X. J. Energy.
  55 Chem. 2021, 61, 236-242.
- 56 [4] Tu, Y.; Deng, J.; Ma, C.; Yu, L.; Bao, X.; Deng, D. Nano Energy 2020, 72, 104700.
- 57 [5] Wang, T.; Wang, M.; Yang, H.; Xu, M.; Zuo, C.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W.;
  58 Cheng, T.; Li, Y. *Energy Environ. Sci.* 2019, 12, (12), 3522-3529.
- 59 [6] Li, Y.; Tan, X.; Chen, S.; Bo, X.; Ren, H.; Smith, S. C.; Zhao, C. Angew. Chem. Int. Ed. 2019, 58,
  60 (2), 461-466.
- 61 [7] Luo, W.; Wang, Y.; Luo, L.; Gong, S.; Wei, M.; Li, Y.; Gan, X.; Zhao, Y.; Zhu, Z.; Li, Z. ACS Catal.
  62 2022, 12, (2), 1167-1179.
- 63 [8] Zheng, J.; Zhang, J.; Zhang, L.; Zhang, W.; Wang, X.; Cui, Z.; Song, H.; Liang, Z.; Du, L. ACS Appl.
- 64 *Mater. Interfaces* **2022**, 14, (17), 19524-19533.
- 65