Supplemental Materials

Effect of Ni atomic fraction on active species of graphene growth on

Cu-Ni alloy catalysts: a density functional theory study

Erik Bhekti Yutomo, Fatimah Arofiati Noor*, Toto Winata

Physics of Electronic Materials Research Division, Department of Physics, Faculty of

Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa no. 10 Bandung

40132, Indonesia.

*Corresponding author: fatimah@itb.ac.id

S1. Structural parameters of the carbon source species

Table S1 compares the optimized C-H bond lengths, d_{C-H} , of the radical species CH_n (n=1,2,3) with the previous experimental and computational studies.

Table S1. Comparison of the optimized C-H bond lengths, d_{C-H} , of the radical species CH_n (n=1,2,3)

		d _{C-H}			
Radical species	This study	Previous experimental study	Previous computational study		
		[1]	[2]		
CH ₃	1.087	-	-		
CH ₂	1.086	1.085	1.084		
СН	1.137	1.120	1.132		

S2. The effect of Ni atoms on the Cu-Ni alloy catalyst.

Two possible structures for the Cu-Ni-1 and Cu-Ni-2 catalysts are shown in Fig. S1. The calculated doping formation energy is also included.

Fig. S1. Comparison of the doped formation energy of the possible configurations of the (a,b) Cu-Ni-1, and (c,d) Cu-Ni-2 catalysts.

The total density of states (TDOS) and the projected density of states (PDOS) of the dorbitals of Cu-Ni-2 and Cu-Ni-3 catalysts are shown in Figs. S2(a) and (b), respectively. The PDOS of sub-Ni 3d of Cu-Ni-2 and Cu-Ni-3 catalysts system are presented. Furthermore, the charge density differences of the Cu-Ni-2 and Cu-Ni-3 catalysts are shown in Figs. S2(c) and (d), respectively.

Fig. S2. Total density of states (TDOS) and projected density of states (PDOS) of the d-orbitals of (a) Cu-Ni-2 and (b) Cu-Ni-3 catalysts. The PDOS of sub-Ni 3d of (c) Cu-Ni-2 and (d) Cu-Ni-3 catalysts system are presented. The black dashed line indicates the Fermi level. The charge density difference in (e) Cu-Ni-2 and (f) Cu-Ni-3 catalysts is illustrated by the iso-surface of 0.01 e/Å. Yellow and blue clouds indicate electron accumulation and depletion, respectively.

S3 Adsorption of carbon source species on the catalyst surface

A comparison of the calculated adsorption energies and equilibrium distances of the carbon source species on the Cu catalyst is shown in Table S2.

Table S2. Adsorption energies, E_{ads} ,	and equilibrium distances,	Z_A , of the carbon source species
and H ₂ O on the Cu catalyst surface		

carbon		This calculation		Previous study	
source species	Sites	E _{ads} (eV)	Z _{A (Å)}	E _{ads} (eV)	Ζ _{Α (} Å)
	hcp	-0.190	2.715		
CU	fcc	-0.190	2.729		
	top	-0.163	2.416	-0.169 ^(a) , -0.160 ^(c)	
	bri	-0.177	2.656		
	hcp	-2.667	2.203	-2.710 ^(a) , -1.850 ^(c)	2.206 ^(c)
CH	fcc	-2.653	2.195	-2.528 ^(a) , -1.850 ^(c)	2.204 ^(c)
	top	-2.504	1.994	-2.571 ^(a)	1.990 ^(c)
	bri	-2.572	2.120		
	hcp	-4.095	1.989	-4.071 ^(a) , -3.550 ^(c)	1.971 ^(c)
CH.	fcc	-4.136	1.987	-4.110 ^(a) , -3.570 ^(c)	1.971 ^(c)
	top	-3.252	1.835	-3.294 ^(a)	
	bri				
	hcp	-5.633	1.904	-5.592 ^(a) , -5.340 ^(c)	1.910 ^(c)
СН	fcc	-5.701	1.904	-5.662 ^(a) , -5.400 ^(c)	1.908 ^(c)
	top	-3.878	1.733		
	bri				
	hcp	-6.204	1.832	-6.178 ^(b)	1.845 ^(b)
C	fcc	-6.245	1.838	-6.238 ^(b)	1.847 ^(b) , 1,98 ^(d)
∽surf	top	-4.272	1.748	-4.281 ^(b)	1.750 ^(b)
	bri	-6.109	1.806	-6.178 ^(b)	1.808 ^(b)
H ₂ O	top	-0.408	2.346	-0.390 ^(d)	

^(a) is the calculation results of ref. [3], in which the catalyst is modeled with a four-layer (4×4) periodic slab, ^(b) is the calculation results of ref. [4], in which the catalyst is modeled with a five-layer (3×3) periodic slab, ^(c) is the calculation results of ref. [5], in which the catalyst is modeled with a three-layer (3×3) periodic slab, and ^(d) is the experimental result of ref. [6], ^(d) is the calculation results of ref. [7], in which the catalyst is modeled with a five-layer (3×3) periodic slab.

The calculated adsorption energies of the carbon source species on the Cu-Ni catalyst surface with various Ni atomic fractions are shown in Table S3.

Cu-Ni-1										
carbon		$E_{ads} (eV)$								
source species	hcp _{3Cu-} _{Cu}	fcc _{3Cu-Cu}	hcp _{2CuNi-} _{Cu}	fcc _{2CuNi-Cu}	top _{Cu}	top _{Ni}	bri _{CuCu}	bri _{CuNi}		
CH ₃		-1,837		-2,572	-2.068	-2.685	-2.000	-2.422		
CH ₂	-3.959	-3.823	-4.490	-4.572		-4.055				
СН	-5.578	-5.565	-6.232	-6.313		-5.034				
C _{surf}	-6.150	-6.354	-7.075	-7.098		-5.742				
H ₂ O					-0.503					
	•				Cu-Ni-2					
carbon					E _{ads}	(eV)				
source species	hcp _{3Cu-} _{Cu}	fcc _{3Cu-Cu}	hcp _{2CuNi-} _{Cu}	fcc _{2CuNi-Cu}	hcp _{2CuNi-} _{Ni}	top _{Cu}	top _{Ni}	bri _{CuCu}	bri _{CuNi}	
CH₃		-1.946		-2.694		-2.177	-2.626	-2.109	-2.531	
CH ₂	-4.028	-3.892	-4.585	-4.640	-4.449		-4.123			
СН	-5.578	-5.579	-6.259	-6.327	-6.150					
Csurf	-6.161	-6.365	-7.113	-7.107	-6.993					
H ₂ O					-0.503					
					Cu-Ni-3					
carbon					E _{ads}	(eV)				
source species	hcp _{3Cu-} _{Cu}	fcc _{3Cu-Cu}	hcp _{2CuNi} - _{Cu}	fcc _{2CuNi-Cu}	hcp _{2CuNi} - _{Ni}	fcc _{2CuNi-} _{Ni}	top _{Cu}	top _{Ni}	bri _{CuCu}	bri _{CuNi}
CH₃		-2.680		-2.708		-2.612	-2.191	-2.667	-2.123	-2.544
CH ₂	-4.068	-4.054	-4.585	-4.680	-4.463	-4.612		-4.163		
СН	-5.606	-5.592	-6.272	-6.340	-6.177	-6.272				
C _{surf}	-6.204	-6.190	-7.130	-7.157	-7.034	-7.062				
H ₂ O					-0.517					

Table S3. Adsorption energies E_{ads} of the carbon source species and H₂O on the Cu-Ni catalyst surface with various Ni atomic fractions

The optimized structures of the adsorbed carbon source species with the lowest adsorption energies on the surfaces of the Cu and Cu-Ni catalysts are shown in Fig. S3.

Fig. S3. The optimized structure of the adsorbed carbon source species with the lowest adsorption energy on the surfaces of the (a) Cu, (b) Cu-Ni-1, (c) Cu-Ni-2, and (d) Cu-Ni-3 catalysts surface. The equilibrium distances and optimized C-H bond lengths are also listed.

The charge density differences of carbon source species on the surfaces of the Cu and Cu-Ni catalysts at their respective preferred sites are shown in Fig. S4.

Fig. S4. The charge density differences of $(a-d) CH_3$, (e-h) CH, and $(i-l) C_{surf}$ on the surfaces of the Cu and Cu-Ni catalysts at their respective preferred sites are illustrated by the 0.015 e/Å iso-surface. Yellow and blue clouds indicate electron accumulation and depletion, respectively.

Fig. S5 shows the local density of states (LDOS) of isolated carbon source species (CH₃, CH, and C) and adsorbed carbon source species on Cu and Cu-Ni catalyst surfaces. The carbon atom in the CH₃ species tends to sp³ hybridize, forming three σ orbitals (Fig. S5(a)), while the carbon

atom in the CH species tends to sp hybridize, forming two σ orbitals and one π orbital (Fig. S5(b)). The C atom has s and p atomic orbitals (Fig. S5(c)). All adsorption systems show that increasing the fraction of Ni atoms in the alloy catalyst causes the Ni atomic orbitals to shift to a higher energy level, indicating an increase in the d-band center. Moreover, the Ni 3d-orbitals become more delocalized as the atomic fraction of Ni is increased

Fig. S5. Local density of states (LDOS) of (a-c) isolated carbon source species, carbon source species on the surface of (d-f) Cu, (g-i) Cu-Ni-1, (j-l) Cu-Ni-2, and (m-o) Cu-Ni-3 catalyst. The d-bands of Cu and Ni are projected to the topmost Cu and Ni atoms, respectively.

S4. Adsorption of a carbon monomer on the catalyst subsurface

The calculated adsorption energies of the carbon monomer species at possible octahedral (*octa*) sites of the Cu and Cu-Ni catalyst subsurfaces are shown in Table S4.

Table S4. The adsorption energies of carbon monomer species at possible octahedral (*octa*) sites of the subsurfaces of the Cu and Cu-Ni catalysts. "N/A" indicates the site is not present on the associated catalyst.

	Carbon	$E_{ads}(eV)$				
Catalysts	monomer species	octa _{3Cu-3Cu}	octa _{2CuNi-} 3Cu	octa _{3Cu-2CuNi}	Octa _{2CuNi-2CuNi}	
Cu	C _{sub-1}	-5.837	N/A	N/A	N/A	
Cu	C _{sub-2}	-5.660	N/A	N/A	N/A	
Cu-Ni-1	C _{sub-1}	-6.517	-7.062	N/A	N/A	
	C _{sub-2}	-6.259	N/A	N/A	N/A	
	C _{sub-1}	N/A	-6.789	-6.925	-7.334	
Cu-INI-2	C _{sub-2}	-6.245	-6.762	N/A	N/A	
	C _{sub-1}	N/A	-6.885	-6.953	-7.415	
Cu-INI-3	C _{sub-2}	N/A	-6.721	-6.708	-7.225	

The charge density differences of a carbon monomer on the second subsurfaces of Cu and Cu-Ni catalysts at their respective preferred sites are shown in Fig. S6.

Fig. S6. The charge density differences of a carbon monomer on the second subsurface of (a) Cu, (b) Cu-Ni-1, (c) Cu-Ni-2, and (d) Cu-Ni-3 catalysts at their respective preferred site are illustrated

by the 0.015 e/Å iso-surface. Yellow and blue clouds indicate electron accumulation and depletion, respectively.

Fig. S7 shows the LDOS of an isolated carbon monomer and an adsorbed carbon monomer on the surfaces of Cu and Cu-Ni catalysts.

Fig. S7. Local density of states (LDOS) of (a) isolated C, C on the second subsurface of (b) Cu, (c) Cu-Ni-1, (d) Cu-Ni-2, and (e) Cu-Ni-3 catalysts at their preferred sites. The d-bands of Cu and Ni are projected to the Cu and Ni atoms above (Cu^a 3d and Ni^a 3d) and below (Cu^b 3d and Ni^b 3d) the second subsurface site, respectively.

S4. Ab initio thermodynamics analysis

The Gibbs free energy of adsorption (ΔG^{ads}) can be calculated using the following equation [8, 9]:

$$\Delta G^{ads} = E_{total} - E_{cat} + F_{vib} - n_C \mu_C - n_H \mu_H \tag{S1}$$

where E_{total} is the total energy of the adsorbed carbon source species on the catalyst, E_{cat} is the total energy of the catalyst, F_{vib} is a parameter containing the vibrational contribution of the Gibbs free energy, n_C and n_H are the number of C and H atoms in the carbon source species (CH₃, CH₂, CH, C_{surf}, C_{sub-1}, and C_{sub-2}), respectively, and μ_C and μ_H are the chemical potentials of carbon and hydrogen atoms, respectively. The vibrational free energy (F_{vib}) is formulated according to the following equation [8, 10]:

$$F_{vib} = E^{ZPE} + E^{vib} + TS^{vib}$$
(S2)

where E^{ZPE} is the zero point energy, E^{vib} is the vibrational energy, S^{vib} is the vibrational entropy, and T is the system temperature. These three parameters can be calculated from [8, 10]:

$$E^{ZPE} = \sum_{i} \frac{\hbar\omega_i}{2}$$
(S3)

$$E^{\nu i b} = \sum_{i} \frac{n\omega_{i}}{\exp\left(\frac{\hbar\omega_{i}}{k_{B}T}\right) - 1}$$
(S4)

$$S^{\nu i b} = k_B \left[\sum_{i} \frac{\hbar \omega_i}{k_B T \left\{ \exp\left(\frac{\hbar \omega_i}{k_B T}\right) - 1 \right\}} - \ln \left\{ 1 - \exp\left(-\frac{\hbar \omega_i}{k_B T}\right) \right\} \right]$$
(S5)

where \hbar is the reduced Plank constant, k_B is the Boltzmann constant, and ω_i is the vibrational frequency of the carbon source species on the catalyst. The vibrational frequency is obtained by diagonalizing the dynamic matrix, in which only the carbon source species are allowed to move. This approach effectively reduces the calculation time while still considering the effect of the catalyst on the vibrational frequency [11, 12]. The calculated vibrational frequencies of the carbon source species in each catalyst are shown in Table S5. We compare the calculated

vibrational frequency with a previous study [13]. Our results are consistent, so we can use the calculated parameters.

The parameter μ_H depends on the T and the H₂ partial pressure, p_{H_2} which can be calculated using the following equation [9, 14, 15]:

$$2\mu_{H} = E_{H_{2}} - k_{B}T \ln\left(\frac{gk_{B}T}{p_{H_{2}}}\zeta_{trans}\,\zeta_{rot}\,\zeta_{vib}\right)$$
(S6)

where g is the degree of degeneration of the electron energy level, and E_{H_2} is the total energy of the H_2 molecule obtained from the DFT calculation (our calculation result is -2.399 Ry (-32.641 eV). ζ_{trans} , ζ_{rot} , and ζ_{vib} are partition functions for the translational, rotational, and vibrational motions, respectively. For the H₂ molecule, a diatomic molecule, we can calculate ζ_{trans} , ζ_{rot} , and ζ_{vib} using the following equations [14, 15]:

$$\zeta_{trans} = \left(\frac{2\pi m kT}{h^2}\right)^{1/2} \tag{S7}$$

$$\zeta_{rot} = \frac{T}{\sigma \Theta_r} \tag{S8}$$

$$\zeta_{vib} = \frac{1}{1 - \exp\left(-\frac{\Theta_v}{T}\right)}$$
(S9)

where m is the mass of the H atom, σ is the symmetry factor, and Θ_r and Θ_v are the rotational and vibration temperatures of the H₂ molecule, respectively.

Carbon source	Catalysts	Vibrational frequency (cm ⁻¹)		
species	Catalysis	This study	Previous study [13]	
		536.469, 1351.445,		
CH ₃	gas	1351.292, 3046.904,	2004 4 2160 9 2160 8	
		3225.353, 3225.853	3004.4, 3100.8, 3100.8	
СЦ	g26	996.870, 2892.304,	062 1 2805 0 2100 0	
	gas	3042.647	903.1, 2003.9, 3190.0	
СН	gas	2740.802	2733.1	
CH₃	Cu	125.484, 125.484,		

Table S5. The vibrational frequencies of carbon source species on the Cu and Cu-Ni catalysts.

		167.955, 325.559,	
		527.609, 527.609,	
		1124.971, 1345.361,	
		1345.361, 2918.810,	
		2993.108, 2993.109	
		149.468, 299.808,	
		382.032, 388.073,	
CH ₂	Cu	524.120, 645.050,	
		1272.822, 2900.294,	
		2942.063	
		470.932, 470.932,	
СН	Cu	610.292, 651.950,	
		651.950, 3067.130	
6	Cu	554.756, 554.756,	
Csurf	Cu	564.971	
C	Cu	609.785, 611.517,	
C _{sub-1}	Cu	611.517	
C	Cu	593.204, 593.204,	
C _{sub-2}	Cu	663.872	
		223.779, 223.779,	
		243.720, 494.431,	
CH	Cu Ni 1	594.856, 594.856,	
СПЗ		1111.215, 1347.689,	
		1347.689, 2906.836,	
		3001.908, 3001.908	
		167.234, 269.135,	
		322.781, 435.518,	
CH ₂	Cu-Ni-1	579.341, 666.582,	
		1285.554, 2872.344,	
		2910.766	
		397.919, 464.466,	
СН	Cu-Ni-1	617.442, 646.000,	
		662.297, 3046.711	
Count	Cu-Ni-1	452.316, 495.721,	
		715.536	
Curr	Cu-Ni-1	549.827, 576.899,	
∽sub-1		704.197	
C _{sub-2}	Cu-Ni-1	596.153, 596.153,	

		651.499			
		210.454, 211.568,			
		335.586, 348.486,			
CLL	C++ NI- 2	463.841, 521.565,			
CH ₃	CU-INI-2	1143.750, 1261.500,			
		1336.882, 2721.784,			
		2883.160, 2909.404			
		204.434, 286.545,			
		328.784, 439.364,			
CH ₂	Cu-Ni-2	558.248, 669.587,			
		1284.197, 2871.880,			
		2908.049			
		390.217, 459.710,			
СН	Cu-Ni-2	615.219, 636.101,			
		673.553, 3044.787			
6	C++ NI- 2	456.712, 499.462,			
C _{surf}	C _{surf} Cu-Ni-2	735.526			
C C		548.682, 637.004,			
C _{sub-1}	CU-INI-2	680.486			
C	CU NE 2	564.321, 595.703,			
C _{sub-2}	Cu-INI-2	699.301			
		166.259, 205.156,			
		275.822, 354.871,			
CH	Cu Ni 2	433.926, 525.402,			
СПЗ	Cu-INI-5	1134.422, 1281.649,			
		1335.802, 2775.161,			
		2893.128, 2924.880			
		249.670, 292.333,			
		355.446, 487.169,			
CH ₂	Cu-Ni-3	571.164, 669.054,			
		1329.825, 2732.693,			
		2959.198			
		385.765, 464.267,			
СН	Cu-Ni-3	592.411, 618.568,			
		663.712, 3041.693			
<u> </u>		464.385, 511.015,			
⊂surf		728.083			
C _{sub-1}	Cu-Ni-3	533.296, 634.533,			

		673.969	
C		568.958, 638,589,	
C _{sub-2}	Cu-INI-5	695,693	

References

- 1 K. Kuchitsu and G. Graner, Structure of free polyatomic molecules : basic data, 1998, 214.
- 2 K. K. Irikura and D. J. Frurip, Computational Thermochemistry, 1998, **677**, <u>https://doi.org/10.1021/BK-1998-0677</u>.
- 3 Y. He, H. Wang, S. Jiang and Y. Mo, *Comput. Mater. Sci.*, 2019, **168**, 17–24, <u>https://doi.org/10.1016/J.COMMATSCI.2019.05.046</u>.
- 4 X. Pang, J. Yang, M. Pang and Y. Zhao, *J. Alloys Compd.*, 2020, **831**, 154747, https://doi.org/10.1016/j.jallcom.2020.154747.
- 5 K. Li, C. He, M. Jiao, Y. Wang and Z. Wu, *Carbon*, 2014, **74**, 255–265, https://doi.org/10.1016/J.CARBON.2014.03.030.
- W. W. Pai, H. T. Jeng, C. –M. Cheng, C. –H. Lin, X. Xiao, A. Zhao, X. Zhang, G. Xu, X. Q. Shi, M. A. V. Hove, C. –S. Hsue and K. –D. Tsuei, *Phys. Rev. Lett.*, 2010, **104**, 036103, https://doi.org/10.1103/PhysRevLett.104.036103.
- 7 Y. –X. Wang and G. –C. Wang, *ACS Catal.*, 2019, **9**, 2261–2274, <u>https://doi.org/10.1021/acscatal.8b04427</u>.
- 8 K. Reuter and M. Scheffler, *Phys. Rev. B*, 2002, **65**, 1–11, <u>https://doi.org/10.1103/PhysRevB.65.035406</u>.
- 9 C. G. Van de Walle and J. Neugebauer, *Phys. Rev. Lett.*, 2002, **88**, 4, https://doi.org/10.1103/PhysRevLett.88.066103.
- 10 P. Li and Z. Li, J. Phys. Chem. C, 2020, **124**, 16233–16247, https://doi.org/10.1021/acs.jpcc.0c02040.
- 11 A. Mohsenzadeh, K. Bolton and T. Richards, *Surf. Sci.*, 2014, **627**, 1–10, 2014, <u>https://doi.org/10.1016/j.susc.2014.04.006</u>.
- 12 Y. A. Zhu, D. Chen, X. G. Zhou and W. K. Yuan, *Catal. Today*, 2009, **148**, 260–267, <u>https://doi.org/10.1016/J.CATTOD.2009.08.022</u>.
- 13 M. E. Jacox, J. Phys. Chem. Ref. Data, 2003, **32**, 1, <u>https://doi.org/10.1063/1.1497629</u>.
- 14 Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi and T. Ohachi, *Surf. Sci.*, 2001, **493**, 178–181, https://doi.org/10.1016/S0039-6028(01)01210-9.
- 15 Y. Kangawa, T. Akiyama, T. Ito, K. Shiraishi and T. Nakayama, *Materials*, 2013, **6**, 3309–3360 https://doi.org/10.3390/MA6083309