Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Electronic Supplementary Information

The effect of substituents and molecular aggregation on the room temperature phosphorescence of a twisted π-system

Cristian A. M. Salla,¹ Giliandro Farias,² Ludmilla Sturm,³ Pierre Dechambenoit,³ Fabien Durola,³ Murat Aydemir,^{4,5} Bernardo de Souza,^{2*} Harald Bock,^{3*} Andrew P. Monkman,^{4*} Ivan H. Bechtold^{1*}

*Corresponding authors: <u>bernadsz@gmail.com; harald.bock@crpp.cnrs.fr;</u> ap.monkman@durham.ac.uk; <u>ivan.bechtold@ufsc.br</u>.

¹Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil

²Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil

³Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France

⁴Department of Physics, Durham University, South Road, Durham, DH1 3LE, U.K.

⁵Erzurum Technical University, Department of Fundamental Sciences, Erzurum, Turkey

Table of Contents

Table of Contents	2
1. Results and Discussion	3
1.1 Single Crystal X-ray Diffraction	3
1.2 Photophysical Measurements	4
1.3 Theoretical Modeling	8
References	9

1. Results and discussion

1.1 Single crystal x-ray diffraction

Figure S1. ORTEP plot of the molecular structure. ORTEP-type view of the two crystallographically different molecules of **HTX-MeO** at 120 K with thermal ellipsoids for C and O at 50 % probability level, showing the same conformations. C: grey, O: red, H: white.

Figure S2. Stick representation of the packing along the (ac) plane. C: grey, O: red. Hydrogen atoms are omitted for clarity.

1.2 Photophysical measurements

Figure S3. Absorption of HTX-MeO in dilute chloroform solution (10⁻⁵ mol L⁻¹).

Figure S4. Time-correlated single-photon counting emission decay curves of **HTX-MeO** in 10⁻³ mol/L⁻¹ 2-MeTHF solution, collected at 420 nm with excitation at 405 nm.

Figure S5. Shift of the emission maximum from **HTX-MeO** in 10⁻³ mol/L⁻¹ 2-MeTHF solution at RT and 90 K.

Figure S6. Normalized absorption (orange line) and emission spectra (dotted black and light orange line) in undissolved powder of **HTX-MeO** at RT with excitation at 350 nm. The Ph was obtained 10 ms after switching off the excitation at 80 K.

Figure S7. Time-resolved measurements of **HTX-MeO** in the powder at RT with excitation at 405 nm. (a) Time-resolved decay. (b) Normalized spectra taken at different TD: TD = 1.1 - 88.3 ns (black line); TD = 4.2 - 84.3 ms (light orange line).

Figure S8. Time-correlated single-photon counting emission decay curves of **HTX-MeO** in powder, collected at 570 nm with excitation at 405 nm.

		HTX ¹	HTX-F ¹	HTX-MeO
	τ _{PF} (ns) ^a	8.19	2.60	9.15
	Φ_{PF}	0.211	0.328	0.332
tion	τ _{Ph} (ms) ^b	498	766	245
Solut	<i>k</i> _{PF} ×10 ⁷ (s⁻¹) °	2.58	12.61	3.62
	k _{ISC} ×10 ⁸ (s⁻¹) ^d	0.96	2.58	7.30
	<i>к</i> _{Рһ} (s ⁻¹) ^е	2.01	1.30	4.08
Powder	τ _{PF} (ns) ^f	11.40	8.90	8.95
	Φ_{PF}	0.410	0.197	0.434
	τ _{Ph} (ms) ^b	210	200	390
	Φ_{Ph}	0.062	0.033	0.047
	<i>k</i> _{PF} ×10 ⁷ (s⁻¹) с	3.60	2.21	4.89
	k _{ISC} ×10 ⁷ (s⁻¹) ^d	5.18	9.02	6.32
	<i>k</i> _{Ph} (s ⁻¹) ^g	0.29	0.17	0.12

Table S1. Photophysical data in 2-MeTHF dilute solution and powder.

^a Obtained from TCSPC measurements at RT and defined as $\tau = \sum \tau_i^2 A_i / \sum \tau_i A_i$, for a triexponential profile. ^b Obtained from time-resolved measurements at 90 K. ^c $k_{PF} = \Phi_{PF} / \tau_{PF}$. ^d $k_{ISC} = \Phi_{ISC} / \tau_{PF}$, considering $\Phi_{ISC} = 1 - \Phi_{PF}$ and assuming, as usual, that the Φ for internal conversion is nil, $\Phi_{IC} = 0$. ^e $k_{Ph} \sim \tau_{Ph}^{-1}$. ^f Obtained from time-resolved measurements at RT. $g_{Ph} = \Phi_{Ph} / \tau_{Ph}$. The error of Φ was ±0.004.

Figure S9. Optimized ground state geometry within ZORA-PBE0/def2-TZVP(-f) level of theory. The DFT ground state geometry was compared to the X-ray structure and the maximum average error found was of the order of 1.26% for bond lengths and of 0.24% for bond angles.

State	Energy		f	Configuration ^a
	eV	nm		Comgulation
S ₁		310	0.00026	$H \rightarrow L$ (31)
	4 002			H → L+1 (18)
	4.002			$H-1 \rightarrow L (18)$
				H-1 → L+1 (29)
S_2	4.417	281	0.67511	$H \rightarrow L$ (54)
				H → L+1 (25)
				H-1 → L+1 (13)
S_3	4.434	280	0.80148	H → L+1 (12)
				$H-1 \rightarrow L(71)$
S ₄	4.448 279	270	0.50231	H-1 → L+1 (81)
		219		H → L+1 (38)
S_5	4.706	054	0.10855	H-2 → L+1 (28)
		204		$H \rightarrow L+2$ (40)
T ₁	3.098 400	400	×1×10-9	$H \rightarrow L$ (16)
			H → L+1 (26)	

Table S2. Data for the TD-DFT and SOC-TD-DFT excitations within ZORA-PBE0/def2-TZVP(f) level of theory for **HTX-MeO** in 2-MeTHF.

				$H-1 \rightarrow L (26)$
				$\Pi - I \rightarrow L + I (10)$
				$\Pi \to L(21)$
T ₂ 3	3.457	359	1.0×10 ⁻⁹	$\Box \rightarrow L^{\pm} I (10)$
				$\Box - I \rightarrow L(II)$
				$\Pi - I \rightarrow L + I (2I)$
			>1×10 ⁻⁹	$H \rightarrow L (10)$
T_3	3.464	358		$H \rightarrow L+1 (21)$
				$H-1 \rightarrow L(21)$
				$H-1 \rightarrow L+1 (17)$
T ₄ 3.				$H \rightarrow L (28)$
	3.862	321	5.0×10 ⁻⁹	H → L+1 (21)
				H-1 → L (15)
				H-1 → L+1 (25)
T_5	3.926	316	1.8×10 ⁻⁸	H-2 → L (19)
- 0				H → L+3 (17)
	3.963	313	1.5×10⁻ ⁸	$H-2 \rightarrow L(10)$
T_6				H-2 → L+1 (22)
				H-1 → L+5 (11)
т_	4 023 308	308	7.0×10-9	H-2 → L+4 (15)
17	4.025	500	1.0410	$H \rightarrow L+2$ (35)
			5.3×10 ⁻⁹	H-2 → L+4 (16)
T ₈	4.072	305		H-1 → L+2 (21)
				H-1 → L+4 (13)
		202	3.3×10 ⁻⁹	H-2 → L+2 (20)
Τ ₉	4.088 30			H-1 → L+4 (24)
		303		H → L+3 (14)
				$H \rightarrow L+5$ (11)

^a Transitions with high percentage contributions are shown in parenthesis.

References

1 G. Farias, C. A. M. Salla, M. Aydemir, L. Sturm, P. Dechambenoit, F. Durola, B. de Souza, H. Bock, A. P. Monkman and I. H. Bechtold, *Chem. Sci.*, 2021, **12**, 15116–15127.