<u>Supplementary Information</u>: Tuning functionalized hexagonal boron nitride quantum dots for full visible-light fluorescence emission

Yuan-Jun Gao*a and Sang Kyu Kwak*b

^{a.} Department of Energy Engineering, School of Energy and Chemical Engineering,

Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea

^{b.} Department of Chemical and Biological Engineering, Korea University, 145 Anamro, Seongbuk-gu, Seoul 02841, Republic of Korea

E-mail: yuanjungao@unist.ac.kr (Dr. Y.-J. Gao), skkwak@korea.ac.kr (Prof. S. K.

Kwak)

Table of Contents

<u>l Figures</u>

Figure S1. Optimized ground state structures of single sp^2 -C or sp^3 -C atom doped BNQDs.S4

Figure S2. Optimized ground state structures of C=C (sp²-C) doped BNQDs.....S5

Figure S3. Optimized ground state structures of single O atom doped BNQDs......S6

Figure S4. Optimized ground state structures of edge -OH and -NH₂ functionalized BNQDs.S6

Figure S5. The frontier molecular orbitals at S_1 minima of edge -OH and -NH₂ functionalized BNQDs...S7

 Figure S7. Electron-hole compositions in each fragment, and natural transition orbitals
 in
 vertical
 excitation
 for
 a.

 S9

Figure S8.Electron-hole compositions in each fragment, and natural transition
orbitalsinverticalexcitationforb.

S11									
Figure orbitals	S9.	Electron–hole in	compositions vertical	in	each ex	fragment, citation	and	natural for	transition c .
S13									
Figure orbitals	S10.	Electron–hole in	compositions vertical	in	each ex	fragment, citation	and	natural for	transition d .
S15									
Figure orbitals	S11.	Electron–hole in	compositions vertical	in	each ex	fragment, citation	and	natural for	transition e .
S17									
Figure orbitals	S12.	Electron–hole in	compositions vertical	in	each ex	fragment, xcitation	and	natural for	transition f .
S19									
Figure CASPT	S13 . 2(8e/	Molecular ort 8o)	oitals of d us	ed	in de	fining the	activ	e space ca	e for MS- alculation.
		···S20							

<u>ll Tables</u>

Table S2. Calculated Vertical Emission Energies, Oscillator Strengths, Wavelength, Key Electronic Configurations, and State Assignments Based on the S₁ Minima of C=C (sp²-C) Doped BNQDs.S5

Table S4. Calculated Vertical Emission Energies, Oscillator Strengths, Wavelength,Key Electronic Configurations, and State Assignments Based on the S1 Minima ofEdge-OHand-NH2FunctionalizedBNQDs.S7

Table S5. Selected Bong Length and Dihedral Angle of BNQDs **a–f** at S_0 and S_1 Minima.S8

Table S6. Calculated Vertical Excitation Energies, Oscillator Strengths, WavelengthandKeyElectronicConfigurationsof**a-f**inAqueousS8

Table S8. The Contribution of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for **b**. S12

Table S9. The Contribution of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for c. S14

Table S10. The Contribution of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for **d**. S16

Table S11. The Contribution of Each Fragment to Electron and Hole in VerticalExcitation and Emission, also Collected the Overlap and Difference of Electron andHole in Each Fragment for e.S18

Table S12. The Contribution of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for f......S20

Table S13. MS-CASPT2 Evaluated Emission Energy (eV) and Wavelength (λ /nm) in Gas Phase. ...S21

Table S14. Calculated Vertical Emission Energies, Wavelength, Oscillator Strengths, and Key Electronic Configurations in Gas Phase and N,N-Dimethyl Formamide (DMF)

 Solution.
 S21

Table S15. BNQDs	Computed a-f	HOMO, at	LUMO and S ₀	HOMO–LUM and	O Gap Energ S ₁	ies (eV) of Minima.
Table S16. and	Computed \$	S _r Index,	D Index, H Emission	Index and t In	dex in Electro	n Excitation Process.
	····S22					
Table S17. BNQDs	B3LYP-D3 at	BJ/6-311 t	++G**/SMD the	Computed T Gr	otal Energies ound	of Doped State.
000						

······S22

1. Localized orbital locator (LOL) function

Localized orbital locator (LOL) function is defined as follows:1

$$LOL(r) = \frac{\tau(r)}{1 + \tau(r)} \tag{1}$$

in which

$$\tau(r) = \frac{D_0(r)}{\left(\frac{1}{2}\right)\sum_i \eta_i |\nabla \varphi_i|^2}$$
(2)

where $D_0(r)$ is the exact kinetic energy density of non-interacting, uniform electron gas.

LOL(r) is the ratio of the kinetic energy density of uniform electron gas to kinetic energy density of real system. Relatively lower kinetic energy density of real system compared to the kinetic energy density of uniform electron gas means large LOL(r) and high orbital localization.

2. Quantitative characterization of the electron-hole distribution in the whole space²

To evaluate overlapping extent of electron and hole, S_r index is defined as follows:

$$S_r index = \int S_r(r)dr \equiv \int \sqrt{\rho^{hole}(r)\rho^{ele}(r)}dr$$
(3)

The most representative position of electron–hole distribution is obtained via calculating centroid. For example, X coordinate of electron centroid is expressed as

$$X_{ele} = \int x \rho^{ele}(r) dr \tag{4}$$

in which x is X component of position vector r.

The charge transfer (CT) length in X/Y/Z can be measured by distance between centroid of electron and hole in corresponding directions:

$$D_x = |X_{ele} - X_{hole}| \tag{5}$$

$$D_y = |Y_{ele} - Y_{hole}| \tag{6}$$

$$D_z = |Z_{ele} - Z_{hole}| \tag{7}$$

The total magnitude of CT length is referred to as *D* index:

$$D index = |D| \equiv \sqrt{(D_x)^2 + (D_y)^2 + (D_Z)^2}$$
(8)

The RMSD of electron and hole can be used to characterize their extent of spatial distribution. For example, X component of RMSD of hole is expressed as

$$\sigma_{hole,x} = \sqrt{\int (x - X_{hole})^2 \rho^{hole}(r) dr}$$
(9)

The $|\sigma_{hole}|$ and $|\sigma_{ele}|$ refer to σ_{hole} and σ_{ele} indices and they measure overall RMSD of electron and hole, respectively.

H index is overall average degree of spatial extension of electron–hole distribution.

$$H index = (|\sigma_{ele}| + |\sigma_{hole}|)/2$$
(10)

t index is designed to measure separation degree of electron and hole in CT direction:

$$t index = D index - H_{CT}$$
(11)

 H_{CT} is average degree of spatial extension of electron and hole in CT direction. To calculate H_{CT} , the following relationship is defined:

$$H_{CT} = |H \cdot u_{CT}| \tag{12}$$

where u_{CT} is unit vector in CT direction and can be straightforwardly derived using centroid of electron and hole.

If t index<0, it implies that electron hole and is not substantially separated due to CT.

3. Orbital hybridization³

Based on the chemical bonding theory, supposing that one system contains two atoms (A and B). The A atom has one orbital φ_A and its orbital energy is ε_A ; and the B atom has one orbital φ_B and corresponding orbital energy is ε_B . The molecular orbital can be expressed as the linear combination of φ_A and φ_B

$$\varphi = c[\varphi_A + \lambda \varphi_B] \tag{13}$$

in which c is the normalization coefficient and λ is expansion coefficient.

If $\lambda \to 0$ or $\lambda \to \infty$, φ is entirely composed by either φ_A or φ_B , thereto no hybridization. If $\lambda = 1$ means the full hybridization.

References

- 1. H.L. Schmider and A.D. Becke, J. Mol. Struct.-THEOCHEM, 2000, 527, 51.
- 2. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
- 3. X. Niu, Y. Li, H. Shu and J. Wang, Nanoscale, 2016, 8, 19376.

Figure S1. B3LYP-D3BJ/6-31G^{**} optimized ground state structures of single sp^2 -C or sp^3 -C atom doped BNQDs.

Table S1. B3LYP-D3BJ/6-31G^{**} Calculated Vertical Emission Energies (E \perp /eV), Oscillator Strengths (*f*), Wavelength (λ /nm), Key Electronic Configurations, and State Assignments Based on the S₁ Minima of Single sp³-C Atom Doped BNQDs.

	E _⊥ (eV)	λ (nm)	f	Configuration	note
				S	
C1	_	_	_	_	Ground state is
					Τ ₁ .
C2	4.59	270	0.0015	H–L (97.9 %)	
C3	4.83	257	0.0090	H–L (97.2 %)	
C4	3.21	386	0.0123	H–L (98.8 %)	
C5	1.75	707	0.0192	H–L (99.1 %)	
C6	2.14	579	0.0013	H–L (94.5 %)	Ground state is
					S ₀ .

Figure S2. B3LYP-D3BJ/6-31G^{**} optimized ground state structures of C=C (sp²-C) doped BNQDs.

Table S2. B3LYP-D3BJ/6-31G^{**} Calculated Vertical Emission Energies (E \perp /eV), Oscillator Strengths (*f*), Wavelength (λ /nm), Key Electronic Configurations, and State Assignments Based on the S₁ Minima of C=C (sp²-C) Doped BNQDs.

	E _⊥ (eV)	λ (nm)	f	Configurations
C1C2	3.93	315	0.1534	H-L (89.6 %)
C2C3	4.19	296	0.1277	H-L (97.5 %)
C3C4	4.94	315	0.0314	H-L (88.7 %)
C4C5	4.43	280	0.2791	H-L (95.5 %)
C5C6	4.46	266	0.2648	H-L (95.0 %)
C6C1	4.66	258	0.0069	H-L (93.9 %)

Figure S3. B3LYP-D3BJ/6-31G** optimized ground state structures of single O atom doped BNQDs.

Table S3. B3LYP-D3BJ/6-31G^{**} Calculated Vertical Emission Energies (E \perp /eV), Oscillator Strengths (f), Wavelength (λ /nm), Key Electronic Configurations, and State Assignments Based on the S₁ Minima of Single O Atom Doped BNQDs.

	E _⊥ (eV)	λ (nm)	f	Configurations
01	5.88	211	0.0403	H-L (44.1 %)
O2 ^b	-	-	-	-
O3	1.02	1217	0.0009	H-L (99.8 %)
04	3.31	375	0.0079	H-L (99.6 %)
O5	1.98	625	0.0002	H-L (95.0 %)
O6	3.47	357	0.0024	H-L (97.7 %)

^b: No stable excited state structure was obtained in geometric optimization.

Figure S4. B3LYP-D3BJ/6-31G^{**} optimized ground state structures of edge -OH and $-NH_2$ functionalized BNQDs.

Table S4. Calculated Vertical Emission Energies (E \perp /eV), Oscillator Strengths (*f*), Wavelength (λ /nm), Key Electronic Configurations, and State Assignments Based on the S₁ Minima of edge -OH and -NH₂ functionalized BNQDs.

	E⊥ (eV)	λ (nm)	f	Configurations
OH ^a	6.69	185	0.2223	H→L (27.2 %), H-1→L+1
				(27.8 %)
OH ^b	5.51	225	0.0008	
NH ₂ ^a	6.45	192	0.0003	H→L (44.7 %), H-1→L+1
				(46.2 %)

^a: B3LYP-D3BJ/6-31G**

b: B3LYP-D3BJ/6-311++G**//B3LYP-D3BJ/6-31G**

Figure S5. The frontier molecular orbitals at S_1 minima of edge -OH and -NH₂ functionalized BNQDs.

Figure S6 Top view (left) and side view (right) of optimized ground state structure of **d**. Also show atomic number.

		So			S ₁	
Bond Length						
(Å)	B1-C	B2-C	B3-C	B1-C	B2-C	B3-C
а	1.580	1.586	1.589	1.587	1.590	1.692
b	1.575	1.575	1.589	1.644	1.644	1.584
С	1.584	1.580	1.592	1.668	1.556	1.565
d	1.568	1.568	1.573	1.681	1.681	1.569
е	1.574	1.571	1.581	1.630	1.630	1.591
f	1.566	1.576	1.556	1.544	1.657	1.585
Dihedral Angle	B4-N2-	B4-N1-	N2-B3-	B4-N2-	B4-N1-	N2-B3-
(°)	B3-C	B1-C	C-X	B3-C	B1-C	C-X
а	-12.0	-0.9	-80.5	-20.6	4.3	-85.8
b	-9.7	0.1	-90.2	-21.7	12.5	-91.7
С	-14.3	10.4	-81.4	-15.3	-6.8	-57.1
d	-10.0	2.0	-90.0	-25.1	16.5	-93.6
е	-10.3	-3.1	-96.2	-25.2	8.6	-91.0
f	-11.1	2.1	-94.1	-3.5	11.5	-107.2

Table S5. Selected Bong Length (in Å) and Dihedral Angle (in °) of BNQDs **a-f** at S₀ and S₁ Minima.

X: the atom of substitute group directly connected with inserted sp³-C atom.

Table S6. B3LYP-D3BJ/6-311++G**/SMD Calculated Vertical Excitation Energies (E_{\perp}/eV), Oscillator Strengths (*f*), Wavelength (λ /nm) and Key Electronic Configurations of **a–f** in Aqueous Solution.

	States	E⊥(eV)	f	λ(nm)	Configurations (NTO)
	$S_0 \rightarrow S_1$	4.02	0.0039	308	H→L (99.86%)
	$S_0 \rightarrow S_2$	4.89	0.0045	253	H→L (98.99%)
a	S₀→S₄	5.36	0.1630	231	H→L (98.15%)
	S₀→S9	5.89	0.0553	211	H→L (91.10%)
	$S_0 \rightarrow S_1$	4.47	0.0035	277	H→L (99.75%)
b	$S_0 \rightarrow S_2$	4.81	0.0122	258	H→L (99.53%)
	S₀→S₄	5.35	0.1529	232	H→L (98.48%)
	S₀→S9	5.86	0.0657	212	H→L (92.97%)
	S₀→S₁	4.33	0.0032	286	H→L (99.84%)
	$S_0 \rightarrow S_2$	5.05	0.0244	246	H→L (99.55%)
L	S₀→S₄	5.45	0.0335	228	H→L (74.60%)
	S₀→S9	5.87	0.1982	211	H→L (85.09%)
	S ₀ → S ₁	5.71	0.0601	217	H→L (91.06%)
d	$S_0 \rightarrow S_2$	5.94	0.0288	209	H→L (94.89%)
u	S₀→S₄	6.04	0.3146	205	H→L (74.50%)
	S₀→S9	6.30	0.0226	197	H→L (43.76%)
	S₀→S₁	4.26	0.0211	291	H→L (99.75%)
•	$S_0 \rightarrow S_2$	5.23	0.0120	237	H→L (97.00%)
e	S₀→S₄	5.67	0.2166	219	H→L (89.14%)
	S₀→S9	5.76	0.0215	215	H→L (69.69%)
	S ₀ →S ₁	4.54	0.0258	273	H→L (99.28%)
f	$S_0 \rightarrow S_2$	4.71	0.0325	263	H→L (99.78%)
	S ₀ →S ₄	5.84	0.1361	212	H→L (91.02 %)

$ S_0 \rightarrow S_9 6.00 0.1879 207 H \rightarrow L (76.96\%)$

Figure S7. Electron–hole compositions in each fragment (top), and natural transition orbitals (NTO) in vertical excitation (down) for **a**.

Table S7. The Contribution (%) of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for **a**.

	Fragment	Hole (%)	Electron (%)	Overlap (%)	Diff (%)
	1	10.99	19.55	14.65	8.56
	2	3.32	30.86	10.12	27.54
e .e	3	5.23	8.00	6.47	2.77
3 ₀ →3 ₁	4	18.24	27.85	22.54	9.61
	5	53.25	-4.90	0.00	-58.15
	6	8.97	18.64	12.93	9.67
	1	2.25	16.52	6.09	14.27
	2	10.35	33.45	18.61	23.10
S . S .	3	4.66	11.30	7.26	6.64
3 ₀ → 3 ₂	4	13.63	22.29	17.43	8.65
	5	8.52	-4.84	0.00	-13.36
	6	60.58	21.28	35.90	-39.30
	1	1.56	16.33	5.04	14.77
	2	1.49	28.65	6.53	27.16
e ,e	3	0.58	13.97	2.86	13.38
0 004	4	0.08	19.45	1.22	19.37
	5	0.96	-4.36	0.00	-5.32
	6	95.33	25.97	49.76	-69.36
	1	2.61	17.51	6.76	14.89
	2	2.78	28.27	8.86	25.49
S . S .	3	0.17	12.44	1.44	12.27
3 0→ 3 9	4	1.16	18.84	4.68	17.68
	5	2.55	-4.33	0.00	-6.88
	6	90.73	27.28	49.75	-63.45
	1	6.34	28.60	13.47	22.26
	2	5.46	33.23	13.47	27.77
9	3	16.69	9.37	12.51	-7.32
$0_1 \rightarrow 0_0$	4	26.48	20.50	23.30	-5.99
	5	33.60	-8.87	0.00	-42.47
	6	11.42	17.16	14.00	5.74

Figure S8. Electron–hole compositions in each fragment (top), and natural transition orbitals (NTO) in vertical excitation (down) for **b**.

Table S8. The Contribution (%) of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for **b**.

	Fragment	Hole (%)	Electron (%)	Overlap (%)	Diff (%)
	1	9.57	25.35	15.58	15.78
	2	9.52	25.36	15.54	15.84
e .e	3	0.59	10.81	2.53	10.22
0 ₀ 0 ₁	4	22.18	21.65	21.91	-0.53
	5	48.27	-1.55	0.00	-49.82
	6	9.87	18.38	13.47	8.51
	1	9.54	25.68	15.65	16.14
	2	9.60	25.69	15.71	16.09
e .e	3	12.52	12.03	12.27	-0.49
3 ₀ → 3 ₂	4	30.57	19.54	24.44	-11.03
	5	7.71	-2.21	0.00	-9.91
	6	30.06	19.27	24.07	-10.79
	1	2.01	22.95	6.79	20.94
	2	2.00	22.96	6.78	20.96
e ,e	3	0.64	15.20	3.11	14.57
3 ₀ → 3 ₄	4	1.22	13.90	4.12	12.68
	5	0.57	-0.68	0.00	-1.25
	6	93.56	25.66	49.00	-67.90
	1	2.69	22.59	7.80	19.89
	2	2.70	22.60	7.81	19.90
S S	3	0.07	14.31	1.03	14.24
3 ₀ →3 ₇	4	1.33	13.57	4.24	12.24
	5	0.64	0.14	0.30	-0.49
	6	92.57	26.79	49.80	-65.78
	1	13.82	35.67	22.21	21.85
	2	13.83	35.68	22.21	21.85
S\S.	3	0.69	9.19	2.51	8.50
U1→U0	4	35.56	8.51	17.39	-27.05
	5	25.56	-3.62	0.00	-29.18
	6	10.55	14.58	12.40	4.03

Figure S9. Electron–hole compositions in each fragment (top), and natural transition orbitals (NTO) in vertical excitation (down) for c.

Table S9. The Contribution (%) of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for c.

	Fragment	Hole (%)	Electron (%)	Overlap (%)	Diff (%)
	1	2.12	3.71	2.81	1.59
	2	3.55	-0.03	0.00	-3.58
e .e	3	0.96	10.88	3.22	9.92
3 ₀ →3 ₁	4	12.51	4.20	7.25	-8.31
	5	80.38	76.51	78.42	-3.87
	6	0.49	4.73	1.53	4.24
	1	2.43	14.22	5.88	11.79
	2	1.65	-2.00	0.00	-3.65
e .e	3	1.14	15.23	4.17	14.09
3 ₀ → 3 ₂	4	0.91	3.64	1.82	2.72
	5	0.58	64.80	6.13	64.23
	6	93.28	4.11	19.58	-89.17
	1	2.10	18.37	6.22	16.26
	2	2.59	19.98	7.20	17.38
e ,e	3	1.79	17.44	5.58	15.65
3 ₀ → 3 ₅	4	2.55	2.71	2.63	0.17
	5	6.36	15.75	10.01	9.39
	6	84.61	25.75	46.68	-58.86
	1	1.58	20.69	5.72	19.11
	2	1.48	17.55	5.10	16.07
S\S	3	0.96	17.16	4.06	16.19
3 0→ 3 10	4	0.49	3.19	1.25	2.70
	5	5.05	1.25	2.52	-3.79
	6	90.43	40.16	60.27	-50.27
	1	3.84	21.54	9.09	17.70
	2	1.74	1.52	1.63	-0.22
S\S.	3	3.29	2.59	2.92	-0.71
U1→U0	4	17.85	7.61	11.65	-10.24
	5	67.73	54.25	60.62	-13.49
	6	5.55	12.50	8.33	6.94

Figure S10. Electron–hole compositions in each fragment (top), and natural transition orbitals (NTO) in vertical excitation (down) for **d**.

Table S10. The Contribution (%) of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for **d**.

	Fragment	Hole (%)	Electron (%)	Overlap (%)	Diff (%)
	1	2.05	9.43	4.40	7.38
	2	2.05	10.06	4.54	8.00
e .e	3	0.50	22.44	3.34	21.94
ວ ₀ →ວ ₁	4	0.00	-0.18	0.00	-0.19
	5	0.61	-19.05	0.00	-19.67
	6	94.66	66.31	79.23	-28.35
	1	7.31	25.50	13.65	18.19
	2	7.32	25.44	13.64	18.12
e .e	3	8.71	12.71	10.52	4.00
3 ₀ → 3 ₂	4	22.03	-24.97	0.00	-47.00
	5	0.77	18.60	3.79	17.83
	6	53.86	42.73	47.97	-11.13
	1	2.43	16.68	6.37	14.24
	2	2.43	16.71	6.37	14.27
SS.	3	2.43	17.94	6.60	15.51
0 ₀ 04	4	4.83	-17.94	0.00	-22.77
	5	0.85	12.80	3.29	11.95
	6	87.03	53.82	68.44	-33.21
	1	2.62	13.06	5.86	10.44
	2	2.63	13.15	5.88	10.53
S\S.	3	3.30	8.69	5.36	5.39
U0→U9	4	7.15	-14.08	0.00	-21.23
	5	0.16	7.99	1.13	7.83
	6	84.13	71.18	77.38	-12.95
c .c	1	11.11	41.54	21.49	30.43
	2	11.12	41.56	21.50	30.44
	3	-0.93	-24.73	0.00	-23.80
$\mathbf{U}_1 \rightarrow \mathbf{U}_0$	4	56.02	10.95	24.76	-45.07
	5	0.44	5.11	1.50	4.67
	6	22.24	25.57	23.85	3.34

Figure S11. Electron–hole compositions in each fragment (top), and natural transition orbitals (NTO) in vertical excitation (down) for **e**.

Table S11. The Contribution (%) of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for **e**.

	Fragment	Hole (%)	Electron (%)	Overlap (%)	Diff (%)
	1	1.42	27.22	6.21	25.81
	2	11.03	25.62	16.81	14.60
e .e	3	2.94	9.14	5.19	6.20
S ₀ →S ₁	4	16.45	20.14	18.20	3.69
	5	58.54	-5.17	0.00	-63.71
	6	9.63	23.05	14.90	13.42
	1	1.43	24.17	5.89	22.73
	2	4.08	25.24	10.15	21.15
e .e	3	1.57	10.86	4.13	9.29
3 ₀ → 3 ₂	4	2.98	16.62	7.03	13.64
	5	1.02	-7.84	0.00	-8.86
	6	88.92	30.96	52.47	-57.96
	1	1.77	22.07	6.24	20.30
	2	2.46	23.55	7.62	21.09
e ,e	3	0.74	12.78	3.08	12.04
3 ₀ → 3 ₆	4	1.74	12.88	4.74	11.13
	5	4.77	-5.63	0.00	-10.40
	6	88.52	34.36	55.15	-54.15
	1	0.24	18.77	2.10	18.54
	2	2.16	21.75	6.86	19.58
S . S .	3	1.73	33.75	7.64	32.03
3 0→38	4	3.34	10.61	5.95	7.27
	5	10.49	-4.90	0.00	-15.40
	6	82.04	20.02	40.53	-62.02
$S_1 \rightarrow S_0$	1	11.44	38.94	21.11	27.49
	2	11.44	38.96	21.11	27.51
	3	0.76	6.56	2.23	5.81
	4	18.88	8.50	12.67	-10.38
	5	52.34	-9.68	0.00	-62.02
	6	5.14	16.72	9.27	11.58

Figure S12. Electron–hole compositions in each fragment (top), and natural transition orbitals (NTO) in vertical excitation (down) for **f**.

Table S12. The Contribution (%) of Each Fragment to Electron and Hole in Vertical Excitation and Emission, also Collected the Overlap and Difference of Electron and Hole in Each Fragment for f.

	Fragment	Hole (%)	Electron (%)	Overlap (%)	Diff (%)
	1	8.41	15.24	11.32	6.84
	2	6.42	20.49	11.47	14.08
6 . 6	3	7.68	8.73	8.18	1.05
ວ ₀ →ວ ₁	4	23.69	-4.72	0.00	-28.41
	5	18.32	64.15	34.28	45.83
	6	35.49	-3.90	0.00	-39.39
	1	2.48	15.90	6.28	13.42
	2	1.68	20.72	5.89	19.05
e .e	3	0.96	9.27	2.98	8.31
J ₀ →J ₂	4	0.67	-7.21	0.00	-7.88
	5	0.15	64.90	3.14	64.75
	6	94.07	-3.57	0.00	-97.64
	1	1.63	12.99	4.60	11.36
	2	1.59	5.40	2.93	3.81
e .e	3	0.41	10.82	2.11	10.41
3 ₀ →3 ₈	4	0.75	-4.05	0.00	-4.80
	5	0.31	5.35	1.29	5.04
	6	95.31	69.49	81.38	-25.83
	1	5.45	21.75	10.88	16.31
	2	4.84	15.38	8.62	10.54
e .e	3	2.87	14.90	6.54	12.02
3 ₀ →3 ₉	4	13.04	-5.84	0.00	-18.88
	5	6.82	11.57	8.88	4.76
	6	60.41	40.96	49.75	-19.45
6.6	1	5.25	4.24	4.72	-1.00
	2	8.65	27.10	15.31	18.45
	3	8.04	2.20	4.20	-5.84
J_→J0	4	45.14	6.16	16.67	-38.98
	5	13.97	39.84	23.59	25.87
	6	18.95	20.46	19.69	1.51

Figure S13. Molecular orbitals of **d** used in defining the active space for MS-CASPT2(8e/8o) calculation.

	Root 1	Root 2	E⊥ (eV)	λ (nm)
а	-1058.700694	-1058.596221	2.84	436
b	-1019.517768	-1019.428509	2.43	510
С	-1057.535622	-1057.465675	1.90	651
d	-944.4494865	-944.3915562	1.58	787
е	-999.6725762	-999.6155484	1.55	799
f	-969.8234327	-969.7830014	1.10	1127

Table S13. MS-CASPT2 Evaluated Emission Energy (eV) and Wavelength (λ /nm) in Gas Phase.

Table S14. Calculated Vertical Emission Energies (E_{\perp}/eV), Wavelength (λ /nm), Oscillator Strengths (*f*) in Gas Phase and N,N-Dimethyl Formamide (DMF) Solution.

	E⊥ (eV)	λ (nm)	f	
	In Gas Phase			
а	2.78	446	0.0010	
b	2.18	570	0.0035	
С	2.07	598	0.0011	
d	1.76	703	0.0183	
е	1.62	766	0.0003	
f	1.32	940	0.0034	
g	2.70	460	0.0010	
	In DMF Solution			
а	2.89	429	0.0013	
b	2.32	534	0.0063	
С	2.18	570	0.0020	
d	1.88	661	0.0300	
е	1.81	684	0.0007	
f	1.44	863	0.0056	
g	2.89	429	0.0027	
g ^α	3.09	401	0.0056	

Note: **g**: modified BNQDs that doped C atom connects with -COOH group α in aqueous solution

	S ₀			S ₁		
Energy	H (eV)	L (eV)	H–L (eV)	H (eV)	L (eV)	H–L (eV)
а	-6.50	-1.34	5.16	-5.71	-1.58	4.13
b	-6.90	-1.37	5.53	-5.48	-1.87	3.60
С	-6.95	-1.31	5.64	-6.83	-3.24	3.59
d	-6.88	-0.42	6.46	-5.49	-2.48	3.00
е	-6.26	-0.96	5.30	-4.57	-1.64	2.93
f	-6.91	-1.63	5.28	-6.14	-3.56	2.58

Table S15. Computed HOMO (H), LUMO(L) and HOMO–LUMO (H–L) Gap Energies (eV) of BNQDs **a-f** at S_0 and S_1 Minima.

Table S16. Computed S_r Index (a.u.), *D* Index (Å), *H* Index (Å) and *t* Index (Å) in Electron Excitation and Emission Process.

		S _r index	D index (Å)	H index (Å)	t index (Å)
	S₀→S₁	0.51697	1.070	2.193	-0.154
a	S ₁ →S ₀	0.49168	0.841	2.250	-0.313
h	S₀→S₁	0.52475	0.704	3.709	-0.474
a	$S_1 \rightarrow S_0$	0.49821	0.820	2.082	-0.303
•	S₀→S₁	0.54750	0.599	1.848	-0.478
L L	S ₁ →S ₀	0.56908	0.903	1.955	-0.183
d	S ₀ → S ₁	0.48898	1.192	3.709	-1.375
a	S ₁ →S ₀	0.53665	0.798	2.012	-0.156
•	S₀→S₁	0.50063	0.960	2.326	-0.354
e	S ₁ →S ₀	0.44864	1.380	2.060	0.184
f	S₀→S₁	0.51934	1.109	2.378	-0.194
	$S_1 \rightarrow S_0$	0.56072	1.218	2.018	-0.022

 Table S17. B3LYP-D3BJ/6-311++G**/SMD Computed Total Energies (Unit: Hartree) of

 Doped BNQDs at the Ground State.

а	b	С
-1062.46912344	-1023.16361569	-1061.30119964
d	e	f
-947.93782325	-1003.29354447	-973.391528682