Supplementary Information

18-valence-electron rule lighted planar tetracoordinate carbon and

nitrogen: the global energy minima of CAl₄Zn and NAl₄Zn⁺

Xiu-dong Jia,*a Zhi-wei Du^b

- a. Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China.
- b. School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China.
- * To whom correspondence should be addressed

Email: 202012801006@email.sxu.edu.cn (Xiu-dong Jia)

Contents

SI-1

Fig. S1 Structures and relative energies (ΔE , in kcal mol⁻¹ at CCSD(T) + ZPE_{B2PLYP-D3(BJ)} level) of CAl₄ (**1a'**), NAl₄⁺ (**2a'**) and their low-energy isomers.

Fig.S2 AdNDP bonding patterns with occupation numbers (ONs) of CAl₄ and NAl₄⁺ (1a' and 2a').

Fig.S3 AdNDP bonding patterns with occupation numbers (ONs) of NAl₄Zn⁺ (2a).

Fig.S4 The orbital energy spectrums and the valence canonical molecular orbitals of 1a and 2a.

Fig.S5 The orbital energy spectrums and the valence canonical molecular orbitals of 1b and 2d.

Fig.S6 The NICS results for **1b** and **2d** at the B3LYP/aug-cc-pVTZ level. The unit of NICS values is in ppm.

SI-2

Cartesian Coordinates for the structures shown in Fig. 2.

Fig.S1 Structures and relative energies (ΔE , in kcal mol⁻¹ at CCSD(T) + ZPE_{B2PLYP-D3(BJ)} level) of CAl₄ (1a'), NAl₄⁺ (2a') and their low-energy isomers.

Fig.S2 AdNDP bonding patterns with occupation numbers (ONs) of CAl₄ and NAl₄⁺ (1a' and 2a').

Fig.S3 AdNDP bonding patterns with occupation numbers (ONs) of NAl₄Zn⁺ (2a).

Fig.S4 The orbital energy spectrums and the valence canonical molecular orbitals of 1a and 2a.

Fig.S5 The orbital energy spectrums and the valence canonical molecular orbitals of 1b and 2d.

Fig.S6 The NICS results for **1b** and **2d** at the B3LYP/aug-cc-pVTZ level. The unit of NICS values is in ppm.

B2PLYP-D3(BJ)/aug-cc-pVTZ-optimized structures for structures shown in Fig. 2.

1a

С	0.00000000	0.00000000	-0.91643600
Al	0.00000000	1.33574000	-2.49650500
Al	0.00000000	-1.33574000	-2.49650500
Al	0.00000000	1.59862500	0.16667700
Al	0.00000000	-1.59862500	0.16667700
Zn	0.00000000	0.00000000	2.20247100
1b			
С	0.00000000	0.00000000	-1.18064600
Al	0.00000000	1.64667300	-0.00159500
Al	1.64184800	0.00000000	-2.35164300
Al	0.00000000	-1.64667300	-0.00159500
Al	-1.64184800	0.00000000	-2.35164300
Zn	0.00000000	0.00000000	2.27560200
1c			
С	-1.36927300	0.83856400	0.49849000
Al	-0.08500500	2.09604900	-0.26196500
Al	-2.53630300	-0.11738400	-0.69812400
Al	-0.39748000	-0.31123100	1.66965200
Al	-0.27068200	-1.91770500	-0.39720100
Zn	1.69929200	-0.05926200	-0.23505500
1d			

С	-0.60267300	1.45886900	0.00000000	
Al	0.10614600	0.93380900	1.69438700	
Al	1.98015300	-0.06659100	0.00000000	
Al	0.10614600	0.93380900	-1.69438700	
Al	-2.15924200	2.63561900	0.00000000	

1e

С	1.71760000	0.54220100	0.00000000
Al	0.00000000	1.27163100	0.00000000
Al	1.43853600	-1.33917800	0.00000000
Al	3.36846300	1.57181300	0.00000000
Al	-2.78113100	1.15816500	0.00000000
Zn	-1.22139600	-1.26216000	0.00000000

2a

Ν	0.00000000	0.00000000	-0.89893200
Al	0.00000000	1.57159900	0.13727200
Al	0.00000000	-1.31541000	-2.49360900
Al	0.00000000	-1.57159900	0.13727200
Al	0.00000000	1.31541000	-2.49360900
Zn	0.00000000	0.00000000	2.25190900

2b

Ν	1.66838900	0.63774200	0.00000000
Al	-2.92779100	1.08248100	0.00000000
Al	3.24516100	1.69378100	0.00000000
Al	1.64017500	-1.21955900	0.00000000
Al	0.00000000	1.31014000	0.00000000
Zn	-1.23756100	-1.39110500	0.00000000

2c

Ν	0.96617800	-0.61848800	0.00000000
Al	2.35175500	2.67556300	0.00000000
Al	-0.12033100	-2.14352800	0.00000000

Al	0.00000000	0.95915200	0.00000000
Al	2.75227900	-0.31200500	0.00000000
Zn	-2.38504600	-0.36666400	0.00000000

2d

Al	0.00000000	1.64146000	-0.08343100
Al	1.64174800	0.00000000	-2.40311400
Al	0.00000000	-1.64146000	-0.08343100
Al	-1.64174800	0.00000000	-2.40311400
Zn	0.00000000	0.00000000	2.44629000
Ν	0.00000000	0.00000000	-1.24836200

2e

Ν	0.00000000	0.00000000	-0.54463700
Al	0.00000000	0.00000000	-5.33575900
Al	0.00000000	0.00000000	-2.30442200
Al	0.00000000	1.60341600	0.46930800
Al	0.00000000	-1.60341600	0.46930800
Zn	0.00000000	0.00000000	3.03109400