An automated reaction route mapping for the reaction of NO and active species on Ag₄ cluster in zeolite

Shunsaku Yasumura,[†] Taisetsu Kato,[†] Takashi Toyao,[†] Zen Maeno,[‡] Ken-ichi Shimizu*,[†]

[†] Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan

[‡] School of Advanced Engineering, Kogakuin University, Tokyo, 192-0015, Japan

Table S1 convergence of cutoff energy for representative structures

	<i>E</i> _{400eV} (eV)	<i>E</i> _{500eV} (eV)	<i>E</i> _{600eV} (eV)
$\begin{array}{c} Ag_4(H)(OOH) \\ (EQ5) \\ Ag_4 + O_2 + H_2 \\ (EQ48) \end{array}$	-888.2	-886.5	-886.8
	-887.6	-885.9	-886.2
Δ <i>E</i> (EQ5–EQ48)	-0.60	-0.58	-0.58
Ag ₄ + 3H ₂ +NO (EQ4) Ag ₄ (ONH ₂) + 2H ₂ (EQ99) Δ <i>E</i> (EQ4–EQ99)	-904.3	-902.6	-903.0
	-905.6	-903.9	-904.3
	-1.3	-1.3	-1.3

Table S2 convergence of k-point mesh for representative structures

	<i>E</i> _{1×1×1} (eV)	$E_{2\times2\times2}$ (eV)	$E_{3 \times 3 \times 3}$ (eV)
$\begin{array}{c} Ag_4(H)(OOH) \\ (EQ5) \\ Ag_4 + O_2 + H_2 \\ (EQ48) \end{array}$	-888.2	-888.2	-888.2
	-887.6	-887.6	-887.6
Δ <i>Ε</i> (EQ5–EQ48)	-0.60	-0.60	-0.60
$Ag_4 + 3H_2 +NO$ (EQ4) $Ag_4(ONH_2) + 2H_2$ (EQ99)	-904.3	-904.4	-904.4
	-905.6	-905.7	-905.7
Δ <i>Ε</i> (EQ4–EQ99)	-1.3	-1.3	-1.3

Table S3 Comparison before/after the optimization of lattice constants (their volumes were fixed)

	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	α (°)	β(°)	γ(°)
Experiment	13.675	13.675	14.767	90	90	120
CHA (Si only)	13.675	13.675	14.767	90	90	120
Ag₄(H)(OOH) (EQ5)	13.669	13.684	14.757	89.66	90.03	119.96
$Ag_4 + O_2 + H_2$ (EQ48)	13.675	13.675	14.767	90	90	120
Ag ₄ + 3H ₂ +NO (EQ4)	13.675	13.675	14.767	90	90	120
$\begin{array}{c} Ag_4(ONH_2) + 2H_2\\ (EQ99) \end{array}$	13.675	13.675	14.767	90	90	120

(a)

(b)

Total of Ag₄ cluster: 1.47

O: -0.36 (-0.48, before adsorption)^{S2} N: 0.39 (0.48, before adsorption) Figure S1 Bader charge analysis for Ag₄ cluster in CHA zeolite (a) before/ (b) after NO adsorption. Color codes: Si (yellow), Al (green), O (red), N (blue), and Ag (silver).