Supplementary Information

Enhancing pressure consistency and transferability of structure-based coarse-graining

Jiahao Tang,^a Takayuki Kobayashi,^b Hedong Zhang,*^a Kenji Fukuzawa^b and Shintaro Itoh^b

^a Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

^b Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

* Corresponding Author. E-mail: zhang@i.nagoya-u.ac.jp

Fig. S1 (a) Coarse-grained bond-length potential. (b) Distribution functions of bond length calculated from simulations of bulk *n*-dodecane systems with the all-atom and our coarse-grained model.

Fig. S2 (a) Coarse-grained bond-angle potential. (b) Distribution functions of bond angle calculated from simulations of bulk *n*-dodecane systems with the all-atom and our coarse-grained model.

Table. S1 Values of parameters *A*, *B*, *C*, *a*, *b*, *c*, and *d* in eqn (18) for the two initial potentials n-mRDF and n-uRDF, which used the modified and unmodified reference RDFs at 0.1 MPa. Note that the units of *r* and U_{nb}^{0} in eqn (18) are Å and kcal/mol, respectively.

	A	В	а	b	С	d	$C (J \cdot m^6)$
n-mRDF	1.05×10^{5}	7.25	-0.031	0.63	-4.20	8.79	5.7×10^{-77}
n-uRDF	8.49×10^5	9.50	-0.024	0.48	-3.03	5.98	