Supplementary Materials

Adsorption kinetics of NO₂ gas on oxyfluorinated graphene film

Vitalii I. Sysoev^{a*}, Ruslan D. Yamaletdinov^b, Pavel E. Plyusnin^a, Alexander V. Okotrub^a and Lyubov G. Bulusheva^a

^aNikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.

^bBoreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, 5, Ac. Lavrentieva ave., Novosibirsk 630090, Russia.

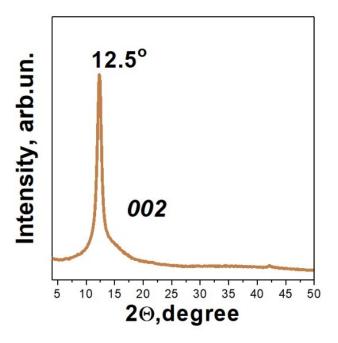
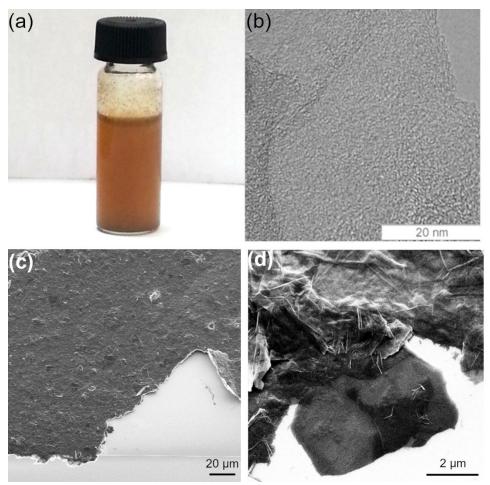
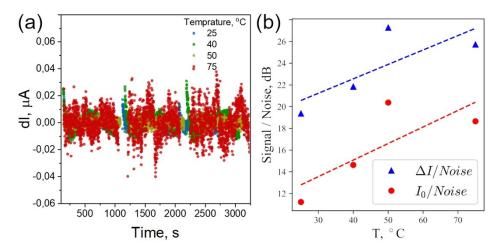




Figure S1. XRD pattern of oxyfluorinated graphite.

Figure S2. (a) OFG suspension in toluene, (b) high-resolution TEM image of OFG flake, (c,d) SEM images of OFG film deposited on SiO_2/Si substrate.

Figure S3. (a) Variation of noise level during NO₂ cycling at different temperature; (b) Signal-to-noise ratio vs operation temperature of OFG sensor.

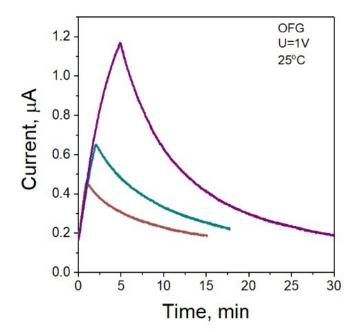


Figure S4. Responses of the OFG sensor to $100~\text{ppm NO}_2$ at exposure times $60,\,180$ and 300~s.