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A. Solving the FFPE to obtain Survival probability,  and determining the surface-�̃�(𝑟,𝜃;𝑠)

averaged FPTD, �̃�(𝑟;𝑠)

We solve for an approximate solution of the survival probability for a DBP, , from the �̃�(𝑟,𝜃;𝑠)

FFPE in Eq. (4) under the self-consistent approximation (SCA) used previously1-2 for a similar 

system. We replace the mixed boundary condition in Eq. (5) with the in-homogeneous 

condition  where  is the Heaviside step function and Q 𝐷𝛼(∂𝑟�̃�(𝑟,𝜃;𝑠))𝑟 = 𝜌 = 𝑄 Θ(𝜀 ‒ 𝜃) Θ(𝑤)

is the effective flux which needs to be determined by assuring the condition

. (S.1)
𝐷𝛼

𝜀

∫
0

(∂�̃�(𝑟,𝜃;𝑠)
∂𝑟 )𝑟 = 𝜌𝑑𝜃 = 𝜅 

𝜀

∫
0

�̃�(𝑟 = 𝜌,𝜃;𝑠)𝑑𝜃

We will begin by finding the general solution of Eq. (4) written as

(S.2)
�̃�(𝑟,𝜃;𝑠) = �̃�(𝑟;𝑠) +

∞

∑
𝑛 = 0

𝑐𝑛�̃�𝑛(𝑟;𝑠)cos (𝑛𝜃)

where the first term is the solution of the non-homogeneous problem, the constants  need to 𝑐𝑛

be determined and  is the solution of the differential equation�̃�𝑛(𝑟;𝑠)

. (S.3)
𝑟2�̃�''

𝑛(𝑟;𝑠) + 𝑟�̃� '
𝑛(𝑟;𝑠) ‒ 𝑟2(𝑛2𝜋2

𝐿2
+

𝑠𝛼

𝐷𝛼
)�̃�𝑛(𝑟;𝑠) = 0
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By applying the appropriate boundary conditions, we get the solution of Eq. (S.3) as a linear 

combination of modified Bessel functions of the first, , and the second kind, , as 𝐼𝜈(𝑥) 𝐾𝜈(𝑥)

shown in Eq. (7) of the main text. The solution of the non-homogeneous problem is obtained 

through Dirichlet boundary condition at r = ρ such that we get

. (S.4)
�̃�(𝑟;𝑠) =

1
𝑠[1 ‒

�̃�0(𝑟;𝑠)

�̃�0(𝜌;𝑠)]
Following the method previously explained in detail for normally diffusing DBPs,2 we find the 

effective flux Q and the constants  in terms of , respectively. This independent constant 𝑐𝑛 𝑐0

 is determined by using the condition described in Eq. (S.1) and eventually the expression 𝑐0

for the survival probability, , is obtained. We choose to skip the details of our �̃�(𝑟,𝜃;𝑠)

derivation as they can be readily followed from Ref. 2 as well and we write the final expressions 

of our quantities which are

 (S.5)
𝑄 =

𝜋𝐷𝛼

𝜀𝜅 [�̃�'(𝜌;𝑠) + 𝑐0 �̃� '
0(𝜌;𝑠)]

 

𝑐𝑛 =
2𝑄𝜅

𝜋𝐷𝛼 �̃� '
𝑛(𝜌;𝑠)

𝑠𝑖𝑛(𝑛𝜀)
𝑛

(S.6)

 . (S.7)
𝑐0 =

1 ‒ �̃�(𝜌;𝑠)
𝑠 �̃�0(𝜌;𝑠)

The parameter  is defined in Eq. (8) of the main text. Finally, we arrive at the survival �̃�(𝜌;𝑠)

probability in the Laplace domain as

. 

�̃�(𝑟,𝜃;𝑠) =
1
𝑠[1 ‒

�̃�(𝜌;𝑠)
�̃�0(𝜌;𝑠){�̃�0(𝑟;𝑠) + 2�̃� '

0(𝜌;𝑠)
∞

∑
𝑛 = 1

�̃�𝑛(𝑟;𝑠)

�̃� '
𝑛(𝜌;𝑠)

sin (𝑛𝜀)
𝑛𝜀

cos (𝑛𝜃)}]
(S.8) 

From this expression of Survival probability, one can determine the FPTD, , which is �̃�(𝑟,𝜃;𝑠)

described in Eq. (6) of the main text.
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The surface-averaged FPTD, , represents the distribution for recognizing the target �̃�(𝑟;𝑠)

region for the first time provided the search of the DBP started from some fixed radial distance 

from the entire DNA molecule. This distribution is determined by integrating out the θ 

coordinate from Eq. (6),

 
�̃�(𝑟;𝑠) =

1
𝜃 

𝜃

∫
0

�̃�(𝑟,𝜃;𝑠) 𝑑𝜃

 (S.9)
= �̃�(𝜌;𝑠)

�̃�0(𝑟;𝑠)

�̃�0(𝜌;𝑠)

Using Eq. (9), we may also write . The most-probable time 
�̃�(𝑟;𝑠) = �̃�(𝑟;𝑠)𝜀 + �̃�(𝑟;𝑠)

�̃� '
0(𝜌;𝑠)

�̃�0(𝜌;𝑠)

and the conditional MFPT in this case may be determined by using similar calculations as 

discussed in the main text. 

If , then , i.e.,  the search of the subdiffusing DBP will begin from 𝑟 = 𝜌 �̃�(𝑟 = 𝜌;𝑠) = �̃�(𝜌;𝑠)

the surface of the DNA. Further, the surface-averaged FPTD can be useful in probing the 1D 

diffusion of the DBP while it searches for the target site along the DNA. This may be achieved 

by using the condition  in the expression of . However, our results may not be  𝑅 = 𝑟 = 𝜌 �̃�(𝑟;𝑠)

suitable to study the movement of microtubule-associated protein complexes because the 

motion of motor-proteins is driven by certain directionality which is not the case for DBPs 

searching for their targets.

B. Numerical simulations to determine the FPTD 

To ensure the accuracy of our analytical result of  in Eq. (9) of the main text which is �̃�(𝑟;𝑠)𝜀

obtained under SCA (as detailed in the previous section), we have performed numerical 

simulations to solve to original FFPE for the FPTD . Here, we are not using the �̃�(𝑟,𝑧;𝑠)

dimensionless notation for the z-coordinate. By using the substitution present in Eq. (6a) within 

Eq. (4), we arrive at

. (S.10)

∂
∂𝑟(𝑟

∂
∂𝑟)�̃�(𝑟,𝑧;𝑠) +

∂
∂𝑧(𝑟

∂
∂𝑧)�̃�(𝑟,𝑧;𝑠) = 𝑟

𝑠𝛼

𝐷𝛼
 �̃�(𝑟,𝑧;𝑠)

With the help of PDEtool in MATLAB, we were able to solve for  for appropriate �̃�(𝑟,𝑧;𝑠)

boundary conditions using Finite Elements Method at various values of the Laplace variable 
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s.2 We constructed a rectangular domain of dimensions  with reflective (𝜌,𝑅) × (0,𝐿)

boundaries (Neumann boundary condition) applied everywhere except  where lies (𝜌) × (0,𝜀)

the partially absorbing boundary condition which is

. (S.11)
�̃�(𝜌,𝑧;𝑠) ‒

𝐷𝛼

𝜅 (∂�̃�(𝑟,𝑧;𝑠)
∂𝑟 )𝑟 = 𝜌 = 1;                                   (0 < 𝑧 < 𝜀)

To determine the radially dependent FPTDs, , we first linearly interpolated the solution �̃�(𝑟;𝑠)𝜀

at a fixed radial distance and then performed numerical integration according to Eq. (9). Our 

results obtained through numerical calculations are in excellent agreement with the analytically 

determined FPTD, Eq. (9), within SCA (Fig. S1). An agreement within the Laplace space 

assures an agreement within the time space as well because both the quantities are uniquely 

associated through Laplace transforms. Thus, to avoid time-consuming simulation analysis in 

the time domain, we resort to solving the FFPE in the Laplace space along with other reasons 

discussed elsewhere.2

Fig. S1: The function  (solid lines) defined in Eq. (9) of the main text is �̃�(𝑟;𝑠)𝜀

compared with the numerical solutions (filled circles), with respect to the Laplace 

variable s at different values of α depicting the degree of sub-diffusion of the DBP. 

Parameters chosen are: m, m, m2/s, nm, 𝑅 = 1 𝜇 𝐿 = 𝜋 𝜇 𝐷1 = 10 𝜇  𝜌 = 2 

m and m . For (a), κ = 1 m/s and for (b), we assumed 𝑟 = 0.1 𝜇 𝜀 = 0.2 𝜇 ≡ 0.2 𝜇

perfect reactions κ = ∞.

C. Short time asymptotic expression of FPTDs - Most probable time 
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The short-time asymptotic of  may be obtained by applying the limit  in the 𝐹(𝑟;𝑡)𝜀 𝑠→∞

Laplace space. By following the procedure detailed previously for normally diffusing DBP, we 

have arrived at general expressions that are valid for any type of subdiffusing particle.2 

To find the short-time asymptote of  using Eq. (9), we first need to determine 𝐹(𝑟;𝑡)𝜀

 to eventually obtain . We begin by using the large-argument asymptotic �̃�(𝑟;𝑠→∞) �̃�(𝜌;𝑠→∞)

expansion of 3 and we find𝐾𝜈(𝑥→∞)

 

�̃�𝑛(𝑟;𝑠)

�̃� '
𝑛(𝑟;𝑠)

≅ ‒
𝐾0(𝑟𝑘𝑛)

𝑘𝑛𝐾1(𝜌𝑘𝑛)
≅ ‒

𝑒
‒ 𝑘𝑛(𝑟 ‒ 𝜌)

𝑘𝑛
[ 𝜌

𝑟
‒

3𝑟 + 𝜌
8𝑟𝑘𝑛 𝑟𝜌

+ …]
(S.12a)

 (S.12b)

�̃� '
0(𝜌;𝑠)

�̃�  
0(𝜌;𝑠)

≅ ‒ 𝑘0[1 +
1

2𝜌𝑘0
‒

1

8(𝜌𝑘0)2
+ …]

Now, from the definition of  in Eq. (8b) and writing 1/kn from Eq. (7b) as�̃�(𝑟;𝑠)

 (S.13)

1
𝑘𝑛

=
1
𝑘0[1 ‒

𝑛2𝜋2

𝐿2𝑘𝑛(𝑘𝑛 + 𝑘0)]
we have, 

.   

�̃�(𝑟;𝑠→∞)≅2
∞

∑
𝑛 = 1

(sin (𝑛𝜀)
𝑛𝜀 )2 ×

𝑒
‒ 𝑘0(𝑟 ‒ 𝜌)

𝑘0 [ 𝜌
𝑟

‒
1
𝑘𝑛( 𝑛2𝜋2 𝜌 𝑟

𝐿2(𝑘𝑛 + 𝑘0)
+

3𝑟 + 𝜌
8𝑟 𝑟𝜌) + …]

(S.14)

To proceed, we will consider each term in Eq. (S.14) separately. Using the identity 

, the first term of Eq. (S.14) becomes

∞

∑
𝑛 = 1

𝑠𝑖𝑛2(𝑛𝜀)/(𝑛𝜀)2 = (𝜋 ‒ 𝜀) 2𝜀

 . (S.15)
�̃�(𝑟;𝑠→∞)(1)≅𝑒

‒ 𝑘0(𝑟 ‒ 𝜌) 𝜌
𝑟

(𝜋 ‒ 𝜀)
𝑘0𝜀

The second term is simplified to 
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. (S.16)
�̃�(𝑟;𝑠→∞)(2)≅ ‒

2𝜋2

𝑘0𝜀2
𝑒

‒ 𝑘0(𝑟 ‒ 𝜌)
∞

∑
𝑛 = 1

𝑠𝑖𝑛2(𝑛𝜀)

𝑛2𝜋2 + 2𝑘2
0𝐿2

 

Considering  and , we use the identity𝑧 = 2𝑘0𝐿 𝑥 = 𝜀/𝜋

(S.17)

∞

∑
𝑛 = 1

𝑠𝑖𝑛2(𝑛𝑥)

𝑛2𝜋2 + 𝑧2
=

1 ‒ 𝑒 ‒ 2𝑥𝑧

4𝑧

to eventually determine the second term of Eq. (S.14) which is

 
�̃�(𝑟;𝑠→∞)(2)≅ ‒

𝜋2

2 2 𝑘2
0𝜀2𝐿

 
𝜌
𝑟

𝑒
‒ 𝑘0(𝑟 ‒ 𝜌)(1 ‒ 𝑒

‒ 2 2 𝑘0𝐿)

 (S.18)
≃‒

𝜋2 𝜌 𝑟

2 2 𝑘2
0𝜀2𝐿

 𝑒
‒ 𝑘0(𝑟 ‒ 𝜌)

For the third term and other subsequent terms, we substitute  as they are in higher orders 𝑘𝑛 ≈ 𝑘0

of powers and they may even be neglected after the third term. Thus, after combining all the 

terms we finally obtain the function  as�̃�(𝑟;𝑠→∞)

.
�̃�(𝑟;𝑠→∞)≅𝑒

‒ 𝑘0(𝑟 ‒ 𝜌)[ 𝜌
𝑟

(𝜋 ‒ 𝜀)
𝑘0𝜀

‒
1

𝑘2
0
{ 𝜋2 𝜌 𝑟

2 2 𝑘2
0𝜀2𝐿

+
(3𝑟 + 𝜌)(𝜋 ‒ 𝜀)

8𝑟𝜀 𝑟𝜌 } + …]
(S.19) 

Since we have  now, we may obtain the function  corresponding to perfect �̃�(𝑟;𝑠→∞) �̃�(𝜌;𝑠→∞)

and imperfect reactions in the target search process after the subdiffusing DBP arrives at the 

target on the DNA. For the case of perfect reactions, i.e., κ = ∞, we have

�̃�(𝜌;𝑠→∞)≅
𝜀
𝜋

+
1

2 2 𝑘0𝐿
+

( 2 𝐿𝜀 + 𝜌𝜋)
8𝐿2𝜀𝜌𝑘2

0

+ 𝑂(𝑘 ‒ 3
0 )

(S.20)

whereas, for the case of imperfect reactions, i.e., κ < ∞, we will have 

. (S.21)
�̃�(𝜌;𝑠→∞)≅

𝜀𝜅
𝐷𝛼𝜋𝑘0

‒
𝜀𝜅

𝐷𝛼𝜋𝑘0
( 𝜅
𝐷𝛼

+
1

2𝜌) + 𝑂(𝑘 ‒ 3
0 )
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Now, we are left with  to determine the function . From the asymptotic �̃�0(𝑟;𝑠→∞) �̃�(𝑟;𝑠→∞)

expansions of  and , we find𝐾𝜈(𝑥) 𝐼𝜈(𝑥)

. 
�̃�0(𝑟;𝑠→∞)≅

cosh (𝑘0(𝑅 ‒ 𝑟))
𝑘2

0𝑟𝑅
 [1 ‒

(3𝑟 + 𝑅)
8𝑘0𝑟𝑅

tanh (𝑘0(𝑅 ‒ 𝑟))]≅
cosh (𝑘0(𝑅 ‒ 𝑟))

𝑘2
0𝑟𝑅

(S.22)

Thus, we eventually obtain

. (S.23)
(�̃�0(𝑟;𝑠)

�̃�0(𝜌;𝑠))𝑠→∞≅
𝜌
𝑟

𝑒
‒ 𝑘0(𝑟 ‒ 𝜌)

Finally, after combining Eqs. (S.12), (S.20), (S.21) and (S.23), we were able to determine the 

short time FPTDs in the Laplace space for the target search process. In the case of perfect 

reactions, i.e., κ = ∞, we have

 (S.24)
�̃�(𝑟;𝑠→∞)𝜀 ≃

𝜌
𝑟

𝑒
‒ (𝑟 ‒ 𝜌) 𝑠𝛼 𝐷𝛼[1 +

(𝜋 ‒ 𝜀)(𝑟 ‒ 𝜌)

8𝜋𝑟𝜌 𝑠𝛼 𝐷𝛼

+ 𝑂(𝑠 ‒ 𝛼)]
and in the case of imperfect reactions, i.e., κ < ∞, we will have

. (S.25)
�̃�(𝑟;𝑠→∞)𝜀 ≃ 𝜅

𝜌

𝑟𝐷𝛼𝑠𝛼𝑒
‒ (𝑟 ‒ 𝜌) 𝑠𝛼 𝐷𝛼

The inverse Laplace transform of the above equations (S.24)-(S.25) is obtained in terms of 

Wright functions4 described by  and are provided in Eq. (11) 
𝑊𝜆,𝜇(𝑥) =

∞

∑
𝑛 = 0

𝑥𝑛/[𝑛!Γ(𝜇 + 𝜆𝑛)]

of the main text. To determine the most probable time, , we use the method of derivatives. 𝑡𝑚𝑝

The time derivative of Eq. (11b) after simplifications results in

. (S.26)
𝑊

‒  
𝛼
2

,
𝛼
2

 ‒ 1( ‒
𝑟 ‒ 𝜌

𝐷𝛼𝑡𝛼) = 0

From the relation  known5 and using the 𝑊𝜆,𝜇 ‒ 1(𝑥) + (1 ‒ 𝜇)𝑊𝜆,𝜇 ‒ 1(𝑥) = 𝜆𝑥𝑊𝜆,𝜆 + 𝜇(𝑥)

asymptotic expansion of the Wright functions,6 one can obtain  provided in Eq. (12) of the 𝑡𝑚𝑝
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main text. The most-probable time increases with respect to the parameter α (Fig. S2(a)) and 

the initial distance of the DBP (Fig. S2(b)).

Fig. S2: The time  in Eq. (12) with respect to (a) α and (b) the initial distance, r. Parameters 𝑡𝑚𝑝

used are: m2/s and nm. For (a), m and (b), .𝐷1 = 10 𝜇 𝜌 = 0.2 𝑟 = 0.1 𝜇 𝛼 = 0.75

 

D. Large time asymptotic expression of FPTDs - Conditional mean time 

Since the MFPT may be analytically determined using the expression

, (S.27)
�̃�(𝑟;𝑠 = 0)𝜀 = (1 ‒ �̃�(𝑟;𝑠)𝜀

𝑠 )𝑠 = 0

we obtain the large-time asymptotic of  by applying the limit . To begin with, from �̃�(𝑟;𝑠)𝜀 𝑠→0

the definition of kn in Eq. (7b), we may write the function . Next, we use �̃�(𝑟;𝑠→0)≅�̃�(𝑟;𝑠 = 0)

to small-argument asymptotic expansion of the modified Bessel functions3 to obtain 

(S.28a)
(�̃�0(𝑟;𝑠)

�̃�0(𝜌;𝑠))𝑠→0 ≃ 1 ‒
𝑅2ln (𝑟 𝜌)

2𝐷𝛼
𝑠𝛼 + 𝑂(𝑠2𝛼)

. (S.28b)
(�̃� '

0(𝜌;𝑠)

�̃�0(𝜌;𝑠))𝑠→0 ≃‒
(𝑅2 ‒ 𝜌2)

2𝜌𝐷𝛼
𝑠𝛼 + 𝑂(𝑠2𝛼)

Using these approximations in Eq. (8), we find the long-time approximation for

(S.29)
�̃�(𝜌;𝑠→0) ≃ [1 + {𝐷𝛼𝜋

𝜅𝜀
+ �̃�(𝜌;𝑠 = 0)}(𝑅2 ‒ 𝜌2)

2𝜌𝐷𝛼
 𝑠𝛼] ‒ 1
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Finally, we may write the long-time expression of the FPTD  in the Laplace space as�̃�(𝑟;𝑠)𝜀

 (S.30)
�̃�(𝑟;𝑠→0)𝜀 ≃

1 + (𝐶 ‒ 𝐵)𝑠𝛼

1 + 𝐴 𝑠𝛼

where, the constants A, B and C are defined in Eq. (15) of the main text. 

Now, to obtain the MFPT for the case when the subdiffusing DBP ( ) starts its search from 𝛼 < 1

a fixed radial distance away from the target, we use Eq. (S.27) to determine 

𝑀𝐹𝑃𝑇 = �̃�(𝑟;𝑠 = 0)𝜀 ≃ ((𝐴 + 𝐵 ‒ 𝐶)𝑠𝛼 ‒ 1

1 + 𝐴𝑠𝛼 )𝑠 = 0 = ∞.

It should also be noted that if α = 1 for a normally diffusing DBP, the MFPT would have been 

a finite quantity MFPT(α = 1) = . The divergence of the MFPT for a �̃�(𝑟;𝑠 = 0)𝜀 = 𝐴 + 𝐵 ‒ 𝐶

single subdiffusing DBP is the reason we resort to obtain the conditional MFPT, Tc, instead. 

The inverse Laplace transform of  (which is provided in Eq. (14) of the main text) �̃�(𝑟;𝑠→0)𝜀

is performed using properties of Mittag-Leffler functions,7-8 defined by 

. The behaviour of Tc (Eq. (16) of the main text) with respect to 
𝐸𝑝,𝑞(𝑦) =

∞

∑
𝑛 = 0

𝑦𝑛/Γ(𝑞 + 𝑝𝑛)

different parameters is presented in Fig. (S3) and the corresponding discussions are in the main 

text.

Fig. S3: The time Tc obtained via Eq. (16) represented as a function of (a) initial distance 

between the DBP and the target, r and (b) the anomaly exponent α. Other parameters chosen 
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are: m, m, m2/s,  and nm. For (a), s (1 hour) 𝑅 = 1 𝜇 𝐿 = 𝜋 𝜇 𝐷1 = 10 𝜇 𝜅 = ∞ 𝜌 = 2 𝑡𝑚𝑎𝑥 = 3600

and  while for (b), m  and m. 𝛼 = 0.75 𝜀 = 0.25 𝜇  ≡ 0.25 𝑟 = 0.1 𝜇

E. Application of our theory to real systems

The typical dimensions of the nucleus of U2OS cells are 10 μm × 10 μm × 6 μm.9 Suppose that 

a single P-TEFb protein is initially situated 0.25 μm away from the target site which is roughly 

about 1 μm in size. The apparent radius of the DNA is considered to be 2 nm.10 Thus, according 

to our theoretical model, we will have R = 5 μm, L = 6 μm, r = 0.25 μm, ε = 1 μm and ρ = 2 

nm. Additionally, we consider the target to be perfectly absorbing, i.e., κ = ∞ for convenience. 

Since, it is more appropriate to consider the target site in the middle of the DNA, we may as 

well halve the values of L and ε. Moreover, we need to consider the dimensionless form of the 

target size to use our results and thus, we will have . From Eq. (17), the 𝜀 ≡ 𝜋𝜀 𝐿 = 0.52

anomaly exponent  and m2/s as discussed in the main text. We use all 𝛼 = 0.61 𝐷1 = 1.46 𝜇

these parameters in Eq. (9) to determine the distance dependent FPTD, , in the Laplace �̃�(𝑟;𝑠)𝜀

space. Numerical inversion of  is performed using Gaver-Stehfest menthod11 and the �̃�(𝑟;𝑠)𝜀

results are shown in Fig. 4 of the main text. 

Using Eq. (12), we find that the most-probable times are 

s and s. The single particle tracking 𝑡𝑚𝑝(𝛼 = 0.61) = 3.54 × 10 ‒ 4 𝑡𝑚𝑝(𝛼 = 1) = 0.021

experiments were performed for about 45 minutes which means that the observation time 

becomes s and thus, by using Eq. (16) we find that the conditional MFPTs for 𝑡𝑚𝑎𝑥 = 2700

these two situations are s  minutes and s 𝑇𝑐(𝛼 = 0.61) = 897.14 ≃ 15 𝑇𝑐(𝛼 = 1) = 231.42

 minutes. It should also be noted that the numerical value of the mean times are quite high ≃ 4

because we have considered the target search of a single DBP in our system and for multiple 

particles searching for the same target, the time would be less.12-13
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