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I. OVERVIEW OF METHODS

A. SCC-DFTB approximations to KS-DFT

We can completely characterise the self-charge-
consistent version of DFTB (SCC-DFTB) by listing its
approximations to Kohn-Sham’s DFT (KS-DFT). This
set of additional approximations to the parent framework
are key to its superior efficiency.

DFTB is derived from a truncated expansion of the
KS-DFT total energy functional. In this work, we made
use of SCC-DFTB, which includes terms up to the sec-
ond order in the expansion of the ground-state electron
density ρ, around a reference density ρ0 being perturbed
by density fluctuations δρ:

ESCC-DFTB [ρ0 + δρ] = E0 [ρ0]+E
1 [ρ0, δρ] +E

2
[
ρ0, (δρ)

2
]

The truncation that leads to the above expression consti-
tutes the first approximation of SCC-DFTB to the exact
KS-DFT total energy functional. Since ρ0 is typically
constructed as a superposition of neutral atomic densi-
ties, δρ would be accounting for the chemical environ-
ment of each atom within the molecule. In approximate
KS-DFT, the molecular orbitals are expanded in the basis
of atom centered basis functions, i.e as a linear combina-
tion of atomic orbitals (LCAO):

ψi (r) =
∑
µ

ciµϕµ (r)

This projection on atom-centered basis functions con-
verts the time-independent Schrödinger equation into an
eigenvalue problem. As a second approximation, DFTB’s
standard formulation employs a minimum set of valence
orbital basis functions (i.e. a minimal basis set) to sim-
plify the linear algebra operations. In practice, these ba-
sis functions are slightly compressed atomic-like solutions
to the KS-DFT equations. It should be cautioned that,
as standard SCC-DFTB uses a minimal basis set, Ryd-
berg states are outside the scope of DFTB-approximate
ES-methods; this particular type of electronic excitations
would require, instead, the use of a very diffuse basis set
to be described correctly.

In the expansion of the total energy, the zeroth-order
term E0[ρ0] is the energy associated with the repulsion
interaction between the nuclei and between the atomic
contributions to the reference density ρ0. The third ap-
proximation of DFTB is to write E0[ρ0] as a sum of pair-

potentials:

E0[ρ0] ≈
1

2

∑
AB

V rep
AB (RAB)

The first-order term E1 [ρ0, δρ] is the band-structure en-
ergy, which involves the computation of matrix elements
of the reference Hamiltonian H [ρ0]:

E1 [ρ0, δρ] =
∑
i

fi
∑
µν

ci∗µ ciν H
0
µν µ ∈ A, ν ∈ B

where fi are the Fermi occupations of the ground-state
molecular orbitals within the LCAO ansatz. Obtain-
ing these matrix elements require the computation of
three-center integrals, because they involve atomic or-
bitals from two different centers, ϕµ (r) and ϕν (r), and
the effective potential at the reference density, Vs [ρ0] (r).
The fourth approximation of DFTB is to neglect the two-
center crystal-field contributions and the three-center in-
teractions in the band energy term, transforming the ref-
erence Hamiltonian diagonal and non-diagonal elements,
H0

µµ and H0
µν , into less expensive one- and two-center

integrals, respectively.
Additionally, SCC-DFTB makes two approxima-

tions to the energy from charge fluctuations, i.e.
the second-order term in the total energy expression

(E2
[
ρ0, (δρ)

2
]
). The fifth approximation of SCC-DFTB

is the monopole approximation of the ground state (GS)
charge density δρ. The zeroth-order truncation of the
multipole expansion of δρ neglects the one-center two-
electron integrals and introduces the computation of par-
tial atomic charges qA (and atomic populations ∆qA)
from two-center orbital overlap matrix elements Sµν , un-
der the Mulliken population analysis:

∆qA = qA − q0A

where

qA ≡
∑
i

fi
∑
µ∈A

∑
ν

1

2

(
ci ∗µ ciν Sµν + ci ∗ν ciµ Sµν

)
and q0A is the number of valence electrons in neutral
atom A. Notice that the charge-fluctuation energy term
is the one turning DFTB into a SCC method, since the
atomic populations themselves depend on the molecular
orbital coefficients. Lastly, SCC-DFTB’s sixth approx-
imation is to enforce the locality of XC contributions,
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making the charge-fluctuation interaction only electro-
static (i.e. Coulombic) for different centers. The inter-
actions between the atomic populations follows a depen-
dence with the inter-atomic distance given by an analyt-
ical density profile function γAB (e.g. a Gaussian pro-
file) that becomes equal to the Hubbard UA parameter
when A = B, which is an on-site contribution linked to
the chemical hardness of the atom:

E2
[
ρ0, (δρ)

2
]
≈ 1

2

∑
AB

γAB (RAB) ∆qA ∆qB

A very strong point towards the superior computational
performance of DFTB is the pre-computation of matrix
elements and repulsion pair-potential splines. With this
strategy, the cost associated with having to compute the
approximate integrals is transferred to a one-time param-
eterization process. The Hamiltonian and overlap matrix
elements H0

µµ and Sµν , needed for the first- and second-
order energy terms, are highly transferable as they are
pre-determined for a reference density. Within the stan-
dard SCC-DFTB, these electronic parameters are pre-
computed for various interatomic distances using a min-
imal basis set of pseudo-atomic KS-orbitals, obtained
from atomic DFT calculations with a confining poten-
tial and a local-XC functional, such as the parameter-
free Perdew-Burke-Ernzerhof (PBE) functional of the
generalised gradient approximation (GGA) class. In an
independent stage of the parameterization process, the
zeroth-order repulsive pair-potentials are most often fit-
ted to results from DFT calculations [1–4] for a set of
element pairs, but these functions can also be fitted to
experimental data (e.g., equilibrium geometries, atom-
ization energies and vibrational frequencies) [5]. When
DFT is used to fit the repulsive functions, calculations are
expected to be performed close to the basis set limit and
with high-quality functionals. These repulsion functions
are the parameters that make DFTB a semi-empirical
method and, in standard SCC-DFTB, are expected to
encode all the chemically relevant non-local nature of the
electron-electron interaction. The Hubbard UA parame-
ters are also obtained from DFT pre-computations. All
these numbers are generated via the Slater-Koster (SK)
technique [6] and stored as SK-files for different pairs of
chemical elements; this set of files is what we call a pa-
rameter set in DFTB.

It is also possible to improve the first approximation
and extend the expansion of the total energy to include
higher-order energy terms. DFTB+ can perform computa-
tions up to the third-order in energy. However, this extra
energy term only becomes important when bonding re-
sults in large atomic charge fluctuations, i.e. for local
densities deviating significantly from the reference one.

B. TD-DFTB from Casida’s LR-TD-DFT

The TD-DFTB method for computing excitation en-
ergies is based on Casida’s LR-approach [7] to TD-DFT,

the time-dependent extension of the Hohenberg-Kohn
theorems. In the dynamic LR treatment of the GS elec-
tron density being perturbed by an external electric po-
tential, Casida derived a pseudo-eigenvalue equation in
the space of single-orbital transitions from i, j-occupied
to a, b-virtual molecular orbitals:∑

jb

[
ω2
iaδijδab + 4

√
ωiaKijab

√
ωjb

]
F jb
I = ω2

IF
ia
I

where the KS orbital energy gaps, ωia, and the coupling
matrix elements, Kijab, are constructed from the ground
state. This problem can be solved for a number of I elec-
tronic transitions, in order to determine their excitation
energies ωI and transition contributions F ia

I , which are
needed to compute the corresponding transition dipole
moments and approximate excited state wavefunctions.
It can be noticed that ωI results from the correction made
by the coupling matrix, which accounts for the electron-
hole interaction, to the initial excitation energy estimate
given by the KS energy difference. Furthermore, FI being
a vector indicates that electronic transitions can display
multi-orbital character.
TD-DFTB is a translation of the Casida’s eigenvalue

problem to the DFTB framework. It consists on extend-
ing SCC-DFTB approximations to significantly simplify
the computation of the coupling matrix elements Kijab.
The one-center (or on-site) exchange-like integrals are
neglected and the remaining expensive two-center two-
electron integrals are converted into simple sums for atom
pairs. The following is the resulting approximate expres-
sion valid for singlet-singlet transitions:

Kijab ≈
∑
AB

γAB (RAB) q
ia
A qjbB

where

qiaA ≡
∑
µ∈A

∑
ν

1

2

(
ci ∗µ caν Sµν + ci ∗ν caµ Sµν

)
are transition charges introduced by the Mulliken
monopole approximation. The XC term in the exact ex-
pression for the coupling matrix elements Kiajb depends
on the full ground-state electron density ρ. That means
that the XC contribution not only depends on the ref-
erence density, as in the second-order energy term, but
also on the density fluctuations from the ρ0 GS-reference.
This would require promoting the Hubbard UA param-
eters into functions of the site’s atomic population, i.e.
UA (∆qA). However, a third approximation is made to
TD-DFTB in order to neglect these charge fluctuations
when computing the coupling matrix elements, allowing
reuse of the approximate profiles γAB from the initial GS
computations.
It is worth pointing out that, as Niehaus has previ-

ously shown [8], the results from the DFTB-approximate
Casida eigenvalue problem are completely equivalent to
those extracted from the real-time TD-DFTB approach,
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for which an implementation in DFTB+ was reported by
Bonafé et al. [9]. The latter approach may pose a chal-
lenge in the deconvolution of excitation peaks for spectro-
scopically complex systems, but it has some advantages
over TD-DFTB-Casida: (i) it does not require truncat-
ing the number of excitations to be computed, (ii) it can
result in a superior computational performance for very
large systems, and (iii) it can be extended for the calcu-
lation of transient absorption spectra (TAS) simulations.
For small systems, like the ones we are employing for this
benchmark, TD-DFTB-Casida was the most convenient
choice in terms of performance and output parsing.

C. DFTB-approximate ppRPA

Borrowed from nuclear physics, ppRPA is an eigen-
value problem describing 2-electron addition and removal
processes. It can be used to predict the excitation en-
ergies of N-electron systems via the treatment of two-
electron additions in corresponding two-electron deficient
(N-2) systems:

ω0→n = ω+2
n − ω+2

0

where ω+2e
0 and ω+2e

n are the eigenvalues for the ground
state and the n-excited state, respectively. The above
expression can be better understood with the help of the
diagram in Fig. S1 of this ESI. Once again, the transla-
tion into the DFTB framework consists on the approx-
imation of bottleneck integrals. Originally, the matrix
elements to be calculated before solving the eigenvalue
problem each involve two integrals of two electrons. In
DFTB-approximate ppRPA, the Mulliken monopole ap-
proximation reduces these expensive integrals to sum-
mations of simpler terms, which share strong similarities
with the expression for the coupling matrix elements in
TD-DFTB.

II. EXTENSIONS TO THE STANDARD
SCC-DFTB METHOD

A. Including long-range corrections in TD-DFTB

To better account for non-local contributions and re-
produce the correct -1/R asymptotic trend for Coulom-
bic interactions in the long distance, parameter sets
for DFTB can be constructed with range-separated or
long-range corrected (LC) XC functionals. Within this
scheme, the two-electron interaction is split into short-
range and long-range components, with the splitting be-
ing modulated by the range-separation parameter ω:

1

r
=

1− e−ω r

r
+
e−ω r

r

The implementation of DFTB+LC [10–12] into DFTB+
is quite recent and therefore there is only one openly

available parameter set prepared to include these correc-
tions into DFTB: OB2(-1-1) [4]. This SK-set employs the
range-separation parameter ω = 0.3 a−1

0 and manages to
reproduces GS geometries and vibrations of CHON or-
ganic molecules with a similar quality as DFTB3:3OB [3].
Thanks to the DFTB+ community being actively working
to extend existing parameter sets, there is reported a very
recent re-parameterisation of OB2 to include sulphur het-
eroatoms in organic molecules [13]. Yet, we could not find
any other reported extension of OB2 and therefore we de-
cided to ignore the fluorinated organic molecules for our
DFTB+LC calculations, a subset that only represents
about 1.4% of all the molecules in the dataset.

B. Including on-site corrections in TD-DFTB

The standard SCC-DFTB formalism can be extended
to partially correct the monopole approximation of the
transition charge density in Casida TD-DFTB, in order
to no longer neglect the on-site integrals of the exchange
type. This implementation is known in DFTB+ as on-site
corrections (OC) [14]. This correction requires provid-
ing additional on-site constants that depend only on the
XC-kernel, which we extracted from the Appendix J of
the DFTB+ manual [15]. Once again, we have ignored flu-
orinated molecules for the DFTB+OC computations, as
there are no available pre-computed on-site constants for
fluorine atoms.

C. Partially polarizing the minimal basis set

The standard formulation of DFTB is characterised by
the use of a minimal basis set. However, we could instead
employ an extended, yet limited, basis set for the pre-
computation of the electronic integrals in the parameter
set SK-files. With the SkProgs package [16] for DFTB+, we
constructed a proof-of-concept, custom SK-parameter set
that works with a minimally polarized minimal basis set.
Since the electronic part of this custom SK-parameter
set was intended to emulate an extension of the 3OB
parameter set [3] to include minimal polarization on H
atoms only, we decided to name this set “3OB(H*)”.
To achieve this minimally polarized set, we added

empty 2p orbitals to provide extra angular degrees of
freedom to the valence electrons on the hydrogen cen-
ters and break the original radial symmetry of the 1s or-
bital. The radial dependence of the extra polarization
orbitals was scaled to bring it closer to that of the 1s va-
lence orbital, but without compromising its original pro-
file. We achieved the custom radial probability densities
(see Fig. S2 of this ESI) by limiting the radial wave func-
tion (see equation 7.2 in the DFTB+ manual [15]) to one

variational coefficient c and one exponent α =
√
2:

Rp(r) = c r e−
√
2 r
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As we only intended to perform single-point compu-
tations (i.e., with fixed nuclei), it was not necessary to
re-parameterise the pair-repulsion splines, which we kept
from the original 3OB SK-files.

III. FURTHER DISCUSSION OF RESULTS

A. Non-conjugated unsaturated molecules

In order to construct a better “rule of thumb” for the
DFTB-approximate ES-methods, we included another
layer of chemical detail for the non-conjugated unsatu-
rated molecules. In Fig. S3 of this ESI, it can be seen that
DFTB-Casida:3OB performed best for non-conjugated
molecules with carbonyl (i.e., ketones and aldehydes),
cyano and alkyne groups, for which their E1 error distri-
butions are centered near ∆CC2E1 = 0 and mostly con-
tained within ±1 eV . However, DFTB-Casida:3OB may
not be the preferred choice for non-conjugated alkenes,
as its estimates of E1 are affected by a systematic under-
estimation and a significant error dispersion. We suspect
that this systematic underestimation of E1 for alkenes is
also related to the self-interaction error.

Not all systems are equally affected by the SIE. We ex-
pect the SIE-induced underestimation of the delocalised
solutions to be more pronounced in molecules with natu-
rally delocalised molecular orbitals of large spatial extent
(e.g., π-conjugated systems). If the delocalised orbitals
do participate in low-lying electronic transitions (e.g.,
frontier orbitals such as HOMO or LUMO), then a sys-
tematic underestimation of the corresponding excitation
energies is also to be expected. Molecules of the chemical
subgroup of alkenes are characterised by the presence of
an isolated carbon-carbon double bond that is not part of
a conjugated π-system and, therefore, is rather spatially
confined. In the case of alkenes we would have expected
a fairly small underestimation of the first excitation en-
ergy. However, alkenes appear to be strongly affected by
a systematic underestimation of E1.
For systems affected by the SIE, the DFTB-ppRPA

method is expected to achieve better results and, as it
can be seen in Fig. S1 of this ESI, this is indeed what is
observed for alkenes. It remains to be asked what makes
alkenes more susceptible to this error than other com-
pounds with isolated double or triple bonds. We specu-
late that alkenes may suffer from the SIE-induced artifi-
cial stabilisation of delocalised solutions to a greater ex-
tent, and thus have underestimated their E1 predictions,
as they are more easily polarisable than the other sub-
families of non-conjugated unsaturated molecules, with
permanent dipole moments (e.g., carbonyl and cyano
groups) or with higher order bonds (i.e., alkynes). In
Table III of this ESI, it can be seen that the measured
polarisabilities [17–19] of linear alkenes are indeed higher
than those of other linear non-conjugated unsaturated
molecules of the same length (i.e., with the same num-
ber of non-H atoms). On a related side note, the SIE

was found to decrease with increasing disparity of elec-
tron affinities between the electron and hole regions [20],
which may reinforce the reason why the SIE is lower for
carbonyl and cyano groups, where excitations between
frontier MOs are expected to involve a non-bonding
molecular orbital (n) highly localised on the heteroatom
(O or N, respectively) and an anti-bonding π orbital (π∗)
delocalised over the double bond.

B. Unsaturated π-conjugated molecules

In Fig S5 of this ESI, we show that DFTB+LC-
Casida:OB2 performs particularly well for the subset of
unsaturated molecules with π-conjugated systems involv-
ing only 3 atoms. The E1 error distributions for these
chemical subgroups can be seen to be contained between
∆CC2E1 ± 1 eV . The most accurate E1 predictions ap-
pear to have been achieved for the subgroup of carboximi-
dates; however, we can also highlight the ester, carboxylic
acid and amide functional groups, which are known for
their chemical importance and ubiquity.

C. Saturated molecules

Since the inclusion of extensions to the standard SCC-
DFTB method was motivated in part on improving the
predictions of E1 for the saturated molecules, we decided
to compare this subset of results using an extra layer of
chemical detail.
The inclusion of on-site corrections resulted in a red-

shift of E1 for all saturated molecules containing at least
one oxygen or nitrogen heteroatom; the average shift ob-
served for epoxides was of about -1.2 eV, and of approx-
imately -0.9 eV for aziridines, while hydrocarbons (satu-
rated molecules of C and H only) were almost unaffected
by this correction. Thanks to the on-site corrections,
DFTB-Casida+OC:3OB was able to provide acceptable
E1 predictions for the subfamily of molecules with an
epoxy functional group.
As seen in Fig. S7 of this ESI, both the on-site cor-

rected DFTB-Casida+OC:3OB and the minimally polar-
ized DFTB-Casida:3OB(H*) performed best for the sub-
families of saturated molecules containing highly strained
three-membered rings, such as epoxide, aziridine and cy-
clopropyl groups.
These ring structures have markedly acute bond angles

and therefore greater p-character than the non-strained
saturated molecules. Together with the large orbital
overlap that exists at the center of these small rings, σ-
electrons end up delocalising with a stabilising effect on
the anti-bonding virtual MOs, in what is known as hyper-
conjugation [21]. The electron density to be delocalised
on the rings can also come from geminal n-orbitals (due
to an interaction known as negative hyperconjugation)
and from electropositive substituents [22]. The highly
strained saturated molecules are a special case. On the
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one hand, being saturated molecules, their electronic ex-
citations are expected to involve σ-type occupied molec-
ular orbitals and, therefore, may be in need of a better
description of the electron density to avoid overestimat-
ing their energies. On the other hand, their higher p-
character would give rise to delocalised MOs, particularly
virtual states near the frontier, which can potentially be
underestimated in energy by the SIE. Therefore, for these
subgroups of molecules we would expect cases that give
rise to beneficial error compensation.

While it would certainly be interesting to further in-
vestigate our hypothesis on error compensation, it is also
beyond the scope of this study. At this stage, we limit
ourselves to updating our rule of thumb to include the
recommendation to use DFTB-Casida+OC:3OB when
predicting E1 for the saturated molecules of the epoxy
family.

We also calculated the average shifts observed in
∆CC2E1 after the inclusion of partial polarisation (H*)
and of long-range corrections (LC), for the sets of three-
membered ring molecules; for each of the chemical groups
discussed we have observed smooth monomodal distribu-
tions with a full width at half maximum (FWHM) be-
tween 0.5 eV and 1 eV (not shown).

On a hand, the addition of partial polarisation red-
shifted E1 in all cases, suggesting that the electron den-
sity oversimplification error was present. We observed
the largest mean shift for cyclopropanes (-0.66 eV), fol-
lowed by aziridines (-0.53 eV) and epoxides (-0.40 eV);
we correlated this with the number of geminal lone pairs
in each chemical group (epoxides have two because of
oxygen, aziridines have one from nitrogen, and the cyclo-
propyl group has none). We would expect molecules with
fewer valence p-electrons to rely more on the quality of
the electron density of σ bonds for their E1 predictions.
On another hand, the inclusion of long-range correc-

tions resulted in a detrimental blue-shift for all E1 predic-
tions, which may signal that the SIE was present. Again,
we observed the largest average shift for cyclopropanes
(+2.15 eV), but this time it was followed by epoxides
(+1.85 eV) and then aziridines (+1.48 eV). We previ-

ously conjectured that systems with more delocalised so-
lutions and higher polarisabilities were expected to be
more affected by the SIE. To compare the polarisabil-
ities of these three chemical subgroups we can refer to
Table III, available in this ESI. In this table, we can
see that there is a trend in polarisabilities based on ele-
mental composition: hydrocarbons are more polarisable
than molecules with oxygen, and both are more polaris-
able than nitrogen-containing molecules. Although the
discussed compounds are cyclic, and solely comprised of
single bonds, we can think of three-membered rings as
being more similar to their very short (2 and 3 non-H
atoms) linear analogues.

D. Regarding oscillator strengths

In Fig. S8 of this ESI the following can be noticed: (i)
for saturated molecules, f1 prediction errors are present
almost exclusively for the DFTB-approximate methods
(see the datapoints populating the horizontal line at y =
0); (ii) for π-conjugated molecules with more than 3 con-
jugated atoms, the underlying limitation is shared be-
tween the compared methods, in a considerable amount
of cases (see the datapoints along the diagonal line at
y = x); (iii) for π-conjugated molecules with 3 conjugated
atoms and for the unsaturated non-conjugated molecules,
f1 prediction errors are present but are rather mild (see
the datapoints clustered near the origin).

This same information can be extracted from the in-
formation compiled in Tables IV & V of this ESI, where
we also provide a second layer of chemical detail (i.e., a
breakdown of results into the different subgroups within
each main chemical family). One additional observa-
tion that we can make to the values in the aforemen-
tioned tables is that, for molecules with π-conjugation,
there is a tendency for the accuracy of f1 predictions to
worsen with increasing number of atoms involved in the
π-conjugated system.
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Main chemical
family

Chemical sub-family SMARTS fragment

Saturated
molecules

Epoxy [C;r3]-[O;r3]-[C;r3]

Aziridine [C;r3]-[N;r3]-[C;r3]

Cyclopropane [C;r3]-[C;r3]-[C;r3]

Oxetane / Azetidine [C;r4]-[O,N;r4]-[C;r4]

Tetrahydrofurane / Pyrrolidine [C;r5]-[O,N;r5]-[C;r5]

Ether / Alcohol [C]-[O]

Other Aliphatic [CX4]

Non-conjugated
unsaturated
molecules

Ketone / Aldehyde O=C

Cyano N#C

Alkyne C#C

Alkene C=C

With no instances in the dataset:

Nitroso, Imine, Azo
O=N , N=C , N=N

π-conjugated
molecules with
3 conjugated
atoms

Amide O=C-N

Carboximidate N=C-O

Ester / Carboxylic Acid O=C-O

Oxime C=N-O

Amidine N=C-N

With no instances in the dataset:

Azoxy, Enamine, Enol

Nitro / Nitrite, Diazo, Azide Isocyanate

N=N-O , C=C-N , C=C-O

O=N-O , N=N-C , N=N=N

TABLE I. This table shows the SMARTS fragments that were employed to recognise chemical sub-families within each of the
main principal chemical families. These additional molecular descriptors were applied in the order in which they appear in the
table, from top to bottom. We made no distinction of sub-families within the family of π-conjugated molecules with more than
3 conjugated atoms.
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GTB2/SV [23] GTB2/SVP [23] DFT:PBE/cc-pVQZ [23] Expt. [24]

H2 0.18 0.90 0.70 0.79

methane 0.77 2.30 2.46 2.45

ethane 1.46 3.94 4.32 4.23

propane 2.13 5.56 6.23 5.92

butane 2.81 7.22 8.14 7.69

TABLE II. This table shows an ordered subset of results obtained by Boleininger et al. [23], exactly as they appear in their
original publication. They correspond to mean polarizability volumes (αm) in Å3, computed with the Gaussian polarizable-ion
Tight Binding method with a second-order expansion of the charge density (GTB2) for H2 and four saturated molecules (the
first four elements in the homologous series of straight-chain alkanes). Calculations were carried out with a minimal basis set
(SV) and a polarizable basis set (SVP). For comparison, we included experimental determinations by Olney et al. [24] and
results from DFT-PBE with the correlation-consistent quadruple-zeta valence basis set (cc-pVQZ) [23].

[Polarizabilities]
n: number of non-H atoms (C, O, N)

n = 2 n = 3 n = 4 n = 5

·C-C·
(alkanes)

CH3CH3

(ethane)

[4.226 Å3]

H(CH2)2CH3

(propane)

[5.921 Å3]

H(CH2)3CH3

(butane)

[8.020 Å3]

H(CH2)4CH3

(pentane)

[9.88 Å3]

·C=C·
(alkenes)

CH2CH2

(ethylene)

[4.076 Å3]

CH3CHCH2

(propene)

[5.990 Å3]

H(CH2)2CHCH2

(1-butene)

[7.830 Å3]

H(CH2)3CHCH2

(1-pentene)

[9.65 Å3]

·C≡C·
(alkynes)

CHCH

(acetylene)

[3.487 Å3]

CH3CCH

(propyne)

[5.550 Å3]

H(CH2)2CCH

(1-butyne)

[7.410 Å3]

H(CH2)3CCH

(1-pentyne)

[9.12 Å3]

·C=O

(aldehydes)

CH2O

(formaldehyde)

[2.770 Å3]

CH3CHO

(acetaldehyde)

[4.278 Å3]

H(CH2)2CHO

(propanal)

[6.350 Å3]

H(CH2)3CHO

(butanal)

[8.20 Å3]

·C≡N

(cyanides)

HCN

(hydrogen cyanide)

[2.346 Å3]

CH3CN

(acetonitrile)

[4.280 Å3]

H(CH2)2CN

(propionitrile)

[6.240 Å3]

H(CH2)3CN

(butanenitrile)

[8.40 Å3]

Table III. This table shows an ordered subset of results that originally appeared in publications by Gussoni et al. [17] (also
available at the NIST database [18]) and Zevatskii et al. [19]. The values correspond to experimentally measured electric
dipole polarisabilities in Å3 units, for non-conjugated unsaturated linear organic molecules containing the functional group at
one end; we added linear alkanes for comparison. Note that for molecules of the same length (equal number of non-H atoms,
n), the polarisabilities of alkenes are higher than those of the other unsaturated non-conjugated compounds; interestingly, a
general trend can be extracted for these polarisability (α) values: α(alkanes) > α(alkenes) > α(alkynes) > α(aldehydes) >
α(cyanides).
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|∆CC2f1| < 0.01

( |∆DFT f1| < 0.01 )

TD-DFT:PBE0

/def2SVP

DFTB-Casida

:3OB

DFTB-Casida

+LC:OB2

DFTB-Casida

:3OB(H*)

All Saturated [5531] 87.7%
45.2%

(49.3%)

32.4%

(34.9%)

46.7%

(51.0%)

↪→ Epoxy [734] 78.3%
60.2%

(72.8%)

56.5%

(71.5%)

60.6%

(73.0%)

↪→ Aziridine [1010] 86.4%
43.9%

(47.0%)

24.1%

(28.0%)

45.7%

(48.3%)

↪→ Cyclopropane [1693] 92.1%
24.1%

(24.7%)

11.8%

(11.1%)

20.4%

(21.3%)

↪→ Oxetane/Azetidine [755] 85.8%
68.0%

(74.6%)

54.6%

(55.6%)

73.3%

(78.9%)

↪→ Tetrahydrofurane

/Pyrrolidine [276]
94.2%

60.5%

(66.3%)

52.9%

(55.6%)

59.4%

(61.2%)

↪→ Ether/Alcohol [852] 90.6%
52.8%

(52.3%)

39.7%

(36.5%)

59.6%

(64.7%)

↪→ Other Aliphatic [211] 78.0%
36.8%

(40.2%)

19.6%

(19.6%)

50.7%

(56.0%)

All Unsaturated

non-conjugated [6757]
86.1%

72.3%

(77.8%)

73.7%

(78.1%)

72.4%

(78.2%)

↪→ Ketone/Aldehyde [2775] 100.0%
96.0%

(96.2%)

99.3%

(99.3%)

95.6%

(96.0%)

↪→ Alkyne [1520] 86.5%
69.9%

(76.4%)

65.1%

(69.3%)

72.4%

(79.9%)

↪→ Cyano [1443] 75.1%
56.4%

(70.8%)

55.2%

(66.3%)

55.2%

(69.3%)

↪→ Alkene [1019] 63.6%
33.7%

(39.6%)

42.8%

(50.2%)

33.3%

(40.7%)

Table IV. This table shows the percentage of molecules with oscillator strengths (f1) that are considered to be good estimates
(compared to CC2), for TD-DFT:PBE0/def2SVP and the DFTB-approximate ES methods of Fig. S7 (in this ESI). In other
words, this table shows for each chemical family and subgroup the percentage of molecules with absolute f1 prediction errors
(|∆CC2f1|) that fell below the 0.01 threshold (depicted as dashed lines in Fig. S7), a value that is customarily used to distinguish
between dark (f < 0.01) and bright (f >= 0.01) excitations. In parentheses, we report the percentage of molecules with
oscillator strengths that are considered to be similar between the compared methods (i.e., |∆DFT f1| < 0.01). In the first
column, for each chemical family and subgroup we also indicate the number of occurrences in the data set (inside the square
brackets). Here we show data for saturated and non-conjugated unsaturated molecules; please refer to Table V within this ESI
for data corresponding to π-conjugated molecules.
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|∆CC2f1| < 0.01

( |∆DFT f1| < 0.01 )

TD-DFT:PBE0

/def2SVP

DFTB-Casida

:3OB

DFTB-Casida

+LC:OB2

DFTB-Casida

:3OB(H*)

Unsaturated π-conjugated

with 3 conj. atoms [3166]
94.8%

88.3%

(91.4%)

88.4%

(92.3%)

89.2%

(91.5%)

↪→ Amide [1186] 99.0%
95.3%

(96.1%)

97.2%

(98.5%)

96.4%

(96.4%)

↪→ Carboximidate [1000] 93.4%
80.4%

(85.3%)

78.2%

(85.5%)

81.7%

(84.6%)

↪→ Ester/Carboxylic Acid [678] 98.4%
95.9%

(95.7%)

97.05%

(96.5%)

96.0%

(95.7%)

↪→ Oxime [200] 81.0%
76.0%

(83.0%)

78.0%

(83.5%)

75.5%

(86.0%)

↪→ Amidine [102] 61.8%
58.8%

(84.3%)

50.0%

(76.5%)

59.8%

(84.3%)

Unsaturated π-conjugated

with >3 conj. atoms [6332]
65.0%

54.9%

(64.2%)

51.0%

(58.7%)

54.9%

(63.3%)

↪→ 4 Conj. atoms [965] 87.8%
82.0%

(87.7%)

83.5%

(88.0%)

82.8%

(88.5%)

↪→ 5 Conj. atoms [1552] 68.1%
63.1%

(70.1%)

62.8%

(69.3%)

64.7%

(68.5%)

↪→ 6 Conj. atoms [1357] 58.2%
42.9%

(49.7%)

34.2%

(41.1%)

42.5%

(48.7%)

↪→ 7 Conj. atoms [1457] 59.8%
46.7%

(59.6%)

38.3%

(48.7%)

45.4%

(58.5%)

↪→ 8 Conj. atoms [1001] 55.0%
44.3%

(58.8%)

42.5%

(52.5%)

43.5%

(57.4%)

Table V. This table shows the percentage of molecules with oscillator strengths (f1) that are considered good estimates
(compared to CC2), for TD-DFT:PBE0/def2SVP and DFTB-approximate ES methods in Fig. S5 (in this ESI). In other words,
this table shows for each chemical family and subgroup the percentage of molecules with absolute f1 prediction errors (|∆CC2f1|)
that fell below the 0.01 threshold (depicted as dashed lines in Fig. S5), a value that is customarily used to distinguish between
dark (f < 0.01) and bright (f >= 0.01) excitations. In parentheses, we report the percentage of molecules with oscillator
strengths that are considered to be similar between the compared methods (i.e., |∆DFT f1| < 0.01). In the first column, for
each chemical family and subgroup we also indicate the number of occurrences in the data set (inside the square brackets).
Here we show data for π-conjugated molecules; please refer to Table IV within this ESI for data corresponding to saturated
and non-conjugated unsaturated molecules.
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Figure S1 . Diagram depicting how ppRPA computes excitation energies from the energies of two-electron addition processes.
An excitation energy for the N-electron system (ω0→n) can be computed as the difference between the energies of two-electron
addition processes (ω+2

0 and ω+2
n ), from the ground state of a two-electron deficient system (i.e. with N-2 electrons) into the

ground and n-th excited states of the resulting N-electron system. The horizontal bars represent electronic states of the same
system, with energies E0 (N − 2) >> En (N) > E0 (N).

Figure S2 . Radial probability densities for the hydrogen orbitals in the original 3OB and in the custom H-polarized 3OB(H*)
parameter sets. As was intended, the custom 1s orbital for H in the 3OB(H*) parameter set (red solid line) coincides with
that of the original 3OB set (black dashed line). The three 2p orbitals in 3OB(H*), allowing polarization, have a radial wave
function with a probability density (blue solid line) that partially overlaps that of the 1s orbital.
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Figure S3 . Overlapped E1 error distributions for chemical subfamilies within the family of non-conjugated unsaturated
molecules (i.e. molecules characterised by isolated double and triple bonds). Histograms were computed using results from
DFTB-Casida:3OB (solid lines) and DFTB-ppRPA:3OB (dashed line). See the first column of Table IV, in this ESI, for the
number of occurrences per chemical family and subgroup.

Figure S4 . Overlapped E1 error distributions for all the unsaturated π-conjugated molecules, computed using DFTB-
Casida:3OB (red dashed line), DFTB-ppRPA:3OB (blue dashed line) and DFTB-Casida+LC:3OB (purple solid line). Note
that including long-range corrections into DFTB-Casida computations (i.e. computing with DFTB+LC-Casida:OB2) achieves
an accuracy similar to that of DFTB-ppRPA:3OB, with a slightly better precision. See the first column of Table V, in this
ESI, for the number of occurrences per chemical family and subgroup.
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Figure S5 . Overlapped E1 error distributions for chemical subfamilies within the family of unsaturated π-conjugated molecules
with 3 conjugated atoms. Histograms were computed using results from DFTB-Casida+LC:OB2. See the first column of
Table V, in this ESI, for the number of occurrences per chemical family and subgroup.

Figure S6 . Comparison of prediction errors ∆CC2E1 for TD-DFT:PBE0/def2SVP and DFTB-Casida+OC:3OB. The scattered
datapoints correspond to each of the nearly 21,800 molecules in the GDB-8 chemical subspace. The datapoints and the projected
histograms were coloured according to the main chemical identity of the compounds: green for saturated molecules, orange for
non-conjugated molecules with an isolated double or triple bond, and blue and purple for π-conjugated molecules with 3 or
more conjugated atoms, respectively. See the first column of Tables IV & V, in this ESI, for the number of occurrences per
chemical family and subgroup.
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Figure S7 . Overlapped E1 error distributions for chemical groups within the family of saturated molecules. On-site corrected
TD-DFTB results, obtained with DFTB-Casida+OC:3OB, are displayed at the top, on a white background. Histograms
computed from results obtained with the minimally polarized DFTB-Casida:3OB(H*) are shown at the bottom, on a grey
background. For ease of comparison, in both backgrounds we have included to scale, as dark-grey shaded areas, the original E1

error distribution for DFTB-Casida:3OB corresponding to all the saturated molecules. See the first column of Tables IV & V,
in this ESI, for the number of occurrences per chemical family and subgroup.
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Figure S8 . Comparison of prediction errors ∆CC2f1, where f1 is the oscillator strength associated to E1, for TD-
DFT:PBE0/def2SVP and three different DFTB-approximate approaches: Casida:3OB (1st column), Casida+LC:OB2 (2nd col-
umn) and Casida:3OB(H*) (3rd column). The scattered datapoints correspond to each of the nearly 21,800 molecules in the
GDB-8 chemical subspace. The datapoints and the projected histograms were coloured according to the main chemical identity
of the compounds: green for saturated molecules (1st row), orange for non-conjugated molecules with an isolated double or
triple bond (2nd row), and blue and purple for π-conjugated molecules with 3 or more conjugated atoms (3rd and 4th rows,
respectively). See the first column of Tables IV & V, in this ESI, for the number of occurrences per chemical family and
subgroup.


