Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022



Fig. S1 Schematic of  $CrO_2$ -based MTJ with electrodes width of 100  $\mu$ m and the interlayer size

of 1 mmx1 mm



Fig. S2 Model structure of  $CrO_2/XO_2/CrO_2$  (X=Ru, Ti, Sn) MJs with mixed interface for theoretical calculations of spin-polarized quantum transport properties. The arrows indicate magnetic moment orientations of diffused  $Cr^{4+}$ .



Fig. S3 The transmission coefficients of (a) (c)spin-up and (b) (d) spin-down electrons for  $CrO_2/RuO_2/CrO_2$  MJ dependent on magnetic moment orientation of diffused  $Cr^{4+}$  for parallel and antiparallel magnetic configures respectively.



Fig. S4 The transmission coefficients of (a) (c)spin-up and (b) (d) spin-down electrons for  $CrO_2/TiO_2/CrO_2$  MTJ dependent on magnetic moment orientation of diffused  $Cr^{4+}$  for parallel and antiparallel magnetic configures respectively.



Fig. S5 The transmission coefficients of (a) (c)spin-up and (b) (d) spin-down electrons for  $CrO_2/SnO_2/CrO_2$  MTJ dependent on magnetic moment orientation of diffused  $Cr^{4+}$  for parallel and antiparallel magnetic configures respectively.



Fig. S6 The temperature dependence of resistance for (a) monolayer  $CrO_2$  film and (b)  $CrO_2/TiO_2/CrO_2$  MTJs with TiO<sub>2</sub> tunnel barrier thickness of 0.6 nm and 2 nm.



Fig. S7 The normalized hysteresis loops of  $TiO_2$  (100) substrate /  $CrO_2$  (40 nm) / $TiO_2$  (t) / $CrO_2$  (12 nm) MTJs with  $TiO_2$  tunnel barrier thickness (t) of (a) 0.6 nm, (b) 1.0 nm, (c) 1.6 nm, (d) 2.0 nm with the external field along  $TiO_2$  [001] crystal orientation. The arrows in (d) represent the magnetization directions of bottom and top  $CrO_2$  electrodes.



Fig. S8 (a) X-ray diffraction patterns and (b)  $\phi$ -scan of (200) crystal plane of CFA film. XRD pattern and  $\phi$ - scan results verify the epitaxial growth of CFA film.



Fig. S9 The normalized hysteresis loops of  $\text{TiO}_2$  (100) substrate/  $\text{CrO}_2$  (20 nm) /TiO<sub>2</sub> (t) /CFA (5 nm) MTJ with TiO<sub>2</sub> tunnel barrier thickness (t) of (a) 0.6 nm, (b) 1.0 nm, (c) 1.6 nm, (d) 2.0 nm with the external field along TiO<sub>2</sub> [001] crystal orientation.



Fig. S10 Model structure of  $CrO_2/TiO_2/CFA$  MTJ for theoretical calculations of spin-polarized quantum transport properties. The positions labeled as A and B represents the oxygen vacancies located on  $TiO_2/CFA$  interface and inside  $TiO_2$  tunnel barrier respectively.