Electronic Supplementary Information
 Contribution
 of Lamellar

Photocatalytic Activity of Alkaline-Hydrothermally

Treated Titania in Rhodamine B Photodegradation.

Fry V. Steky ${ }^{a, b}$, Didi P. Benu ${ }^{a, b, c}$, Kemal L. H. Putra ${ }^{b}$, Muhamad N. Siddik ${ }^{b}$, Damar R. Adhika ${ }^{d, e}$, Rino R. Muktib,d, Brian Yuliarto ${ }^{\text {d,e },}$ Irma Mulyani ${ }^{b}$, Veinardi Suendo* ${ }^{* b, d}$
${ }^{\text {a }}$ Doctoral Program of Chemistry, Faculty of Mathematics and Natural Sciences, of Department of Chemistry, Institut Teknologi Bandung, Bandung 40132, Indonesia.
${ }^{\text {b }}$ Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi
Bandung, Jl. Ganesha No. 10, Bandung 40132 Indonesia.
${ }^{\text {cop }}$ Department of Chemistry, Universitas Timor, Jl. Eltari, Kefamenanu 85613, Indonesia.
${ }^{\text {d}}$ Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Indonesia.
${ }^{\text {e}}$ Engineering Physics Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132 Indonesia.

S1. Particle Size Distribution

Figure S1. Particles Size Distribution of (a) S-AS, (b) S-HT, and (c) S-HT-500.

S2. Particle Size Distribution

Figure S2. XRD pattern of (a) S-500 and (b) S-500-HT. The Blue area represents the anatase phase, while the green area represents the amorphous phase.

S. 3 Determining of $\{001\}$ facet percentage

The interplanar spacing or d-spacing of the anatase crystal can be determined using Bragg's equation:

$$
\begin{align*}
& 2 d_{h k l} \sin \theta=n \lambda \tag{S1}\\
& \sin \theta=\frac{n \lambda}{2 d_{n k l}} \tag{S2}
\end{align*}
$$

The first-order reflection from (100) planes occurs at an angle given by:

$$
\begin{equation*}
\sin \theta\left(1^{\text {st }} \text { order } 001\right)=\frac{1 \lambda}{2 d_{001}} \tag{S3}
\end{equation*}
$$

The second-order reflection from the same set of planes then occurs at an angle:

$$
\begin{equation*}
\sin \theta\left(2^{n d} \text { order } 001\right)=\frac{2 \lambda}{2 d_{001}} \tag{S4}
\end{equation*}
$$

It is always referred to as the first-order reflection from (200) planes, i.e.

$$
\begin{equation*}
\sin \theta\left(1^{\text {st }} \text { order } 002\right)=\frac{1 \lambda}{2 d_{002}} \tag{S5}
\end{equation*}
$$

Similarly, the third and fourth-order reflection from (001) planes is at an angle:

$$
\begin{align*}
& \sin \theta\left(3^{r d} \text { order } 001\right)=\frac{3 \lambda}{2 d_{001}} \equiv \sin \theta\left(1^{\text {st }} \text { order } 003\right)=\frac{1 \lambda}{2 d_{003}} \tag{S6}\\
& \sin \theta\left(4^{r d} \text { order } 001\right)=\frac{4 \lambda}{2 d_{001}} \equiv \sin \theta\left(1^{\text {st }} \text { order } 004\right)=\frac{1 \lambda}{2 d_{004}} \tag{S7}
\end{align*}
$$

Note that the $d_{001}=2 d_{002}=3 d_{003}=4 d_{004}$, thus we can obtain the d_{001} value by knowing the d_{004} value. We have tabulated the calculation result of $d_{\text {hkl }}$ spacing of anatase based on the XRD pattern in Table S3-1.

Table S3-1. The unit cell parameters of samples calculated using Bragg's equation

Samples	$\boldsymbol{d}_{\mathbf{0 0 4}}$	$\boldsymbol{d}_{\mathbf{2 0 0}}$	$\boldsymbol{d}_{\mathbf{0 0 1}}$	$\boldsymbol{d}_{\mathbf{1 0 0}}$	$\boldsymbol{\theta}$
S-HT-500	2.3783	1.8921	9.5132	3.7842	68.3°
S-500-HT	2.3764	1.8919	9.5056	3.7838	68.3°
A-HT-500	2.3758	1.8934	9.5032	3.7868	68.3°
A-500-HT	2.3799	1.8899	9.5196	3.7798	68.3°
P25 Degussa	2.3810	1.8950	9.5240	3.7900	68.3°

Figure S3-1. The schematic of the anatase unit cell.
The crystal system of anatase is tetragonal (I41/amd) with unit cell $a=b \neq c ; \alpha=\beta=\gamma=90^{\circ}$, where $a=b=d_{100}$ and $c=d_{001}$. We know θ is the angle between the (101) and (001) planes, as shown in Figure S3-1, where:

$$
\begin{equation*}
\theta=\tan ^{-1} \frac{d_{001}}{d_{100}} \tag{S8}
\end{equation*}
$$

thus, using equation S8, we can calculate θ for each sample as tabulated in Table S3-1.
Since the crystallite consists of several unit cells, thus the ratio of d_{100} to d_{001} is equal to the ratio of the average crystallite size along [100] direction $\left(D_{100}\right)$ to the average crystallite size along [001] direction $\left(D_{001}\right)$, which can be written as:

$$
\begin{equation*}
\theta=\tan ^{-1} \frac{d_{001}}{d_{100}}=\tan ^{-1} \frac{D_{001}}{D_{100}} \cong 68.3^{\circ} \tag{S9}
\end{equation*}
$$

Figure S3-2. (a) HRTEM images of the calcined sample show the square-bipyramidal shape of crystallites. (b) Projected crystallites to $\{010\}$ plane are depicted as blue hexagons and at higher magnification, (c) a hexagonal shaped crystallite shows vertical lattice fringes representing the $\{004\}$ interplanar distance. (d) The geometric scheme of a truncated square-bipyramidal shaped anatase crystallite.

The percentage of $\{001\}$ facet can be calculated by knowing the crystallite truncated length (a). We use the geometry approach to calculate the a value since it has a relation with D_{100} and D_{001}. The average crystallite size ($D_{h k l}$) calculated using the Scherrer equation:

$$
\begin{equation*}
D_{h k l}=\frac{K \times \lambda}{B_{h k l} \times \cos \theta_{h k l}} \tag{S10}
\end{equation*}
$$

Where $D_{h k l}$ is the mean crystallite size in [hkl] direction, K is a dimensionless shape factor (in this case, we use $K=0.94$), λ is the source X -ray wavelength (in this case, we use $\mathrm{Cu} K_{\alpha}=1.540$ \AA), $B_{h k l}$ is the line broadening at half the maximum intensity (FWHM) of ($h k l$) peak, $\theta_{h k l}$ is the Bragg angle.

As shown in Figure S3-2, we can calculate the values of a and l using the following equations:

$$
\begin{align*}
& a=D_{100}-\frac{D_{001}}{\tan \theta} \tag{S11}\\
& l=\frac{D_{001}}{2 \sin \theta} \tag{S12}
\end{align*}
$$

The percentage of $\{001\}$ facet can be calculated by dividing the area of (001) plane to the crystallite total surface area:

$$
\begin{align*}
& A_{\{001\}}=a \times a=\left(D_{100}-\frac{D_{001}}{\tan \theta}\right)^{2} \tag{S13}\\
& A_{\{101\}}=\left(\frac{D_{100}+a}{2}\right) \times l=\left(2 D_{100}-\frac{D_{001}}{\tan \theta}\right) \times \frac{D_{001}}{2 \sin \theta} \tag{S14}\\
& \%\{001\} \text { facet }=\frac{\left(D_{100}-\frac{D_{001}}{\tan \theta}\right)^{2}}{\left(D_{100}-\frac{D_{000}}{\tan \theta}\right)^{2}+\frac{2 D_{001}}{\sin \theta}\left(2 D_{100}-\frac{D_{001}}{\tan \theta}\right)} \times 100 \% \tag{S15}
\end{align*}
$$

S4. The Rietveld refinement and the corresponding Williamson-Hall plot

Figure S4. The Rietveld refinement results and the corresponding Williamson-Hall plot of (a) S-HT-500, (b) S-500-HT, (c) A-HT-500, and (d) A-500-HT.

S5. \mathbf{N}_{2} physisorption results

Figure S5. N2 physisorption isotherm of (a) S-500 vs. S-500-HT and (b) A-500 vs. A-500-HT.

S6. HRTEM images of each synthesized step

Figure S6. (a-c) TEM and (d-f) HRTEM images of samples: (a,d) as-synthesized, (b,e) hydrothermally-treated, and (c,f) calcined samples. The inset of (d-f) is the corresponding SAED pattern.

S7. Photodegradation of Rhodamine B

Figure S7. Evolution of PL spectra of rhodamine B with respect to the irradiation time and the corresponding first-order kinetic plots.

