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S1. Particle Size Distribution 

 

 

 
Figure S1. Particles Size Distribution of (a) S-AS, (b) S-HT, and (c) S-HT-500. 
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S2. Particle Size Distribution 

 
Figure S2. XRD pattern of (a) S-500 and (b) S-500-HT. The Blue area represents the anatase 

phase, while the green area represents the amorphous phase. 
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S.3 Determining of {001} facet percentage 

 

The interplanar spacing or d-spacing of the anatase crystal can be determined using Bragg’s 

equation: 

2𝑑𝑑ℎ𝑘𝑘𝑘𝑘 sin 𝜃𝜃 = 𝑛𝑛𝑛𝑛 (S1) 

sin𝜃𝜃 = 𝑛𝑛𝑛𝑛
2𝑑𝑑ℎ𝑘𝑘𝑘𝑘

 (S2) 

The first-order reflection from (100) planes occurs at an angle given by: 

sin𝜃𝜃 (1𝑠𝑠𝑠𝑠order 001) = 1𝑛𝑛
2𝑑𝑑001

 (S3) 

The second-order reflection from the same set of planes then occurs at an angle: 

sin𝜃𝜃 (2𝑛𝑛𝑑𝑑order 001) = 2𝑛𝑛
2𝑑𝑑001

 (S4) 

It is always referred to as the first-order reflection from (200) planes, i.e. 

sin𝜃𝜃 (1𝑠𝑠𝑠𝑠order 002) = 1𝑛𝑛
2𝑑𝑑002

 (S5) 

Similarly, the third and fourth-order reflection from (001) planes is at an angle: 

sin𝜃𝜃 (3𝑟𝑟𝑑𝑑order 001) = 3𝑛𝑛
2𝑑𝑑001

≡ sin 𝜃𝜃 (1𝑠𝑠𝑠𝑠order 003) = 1𝑛𝑛
2𝑑𝑑003

 (S6) 

sin𝜃𝜃 (4𝑟𝑟𝑑𝑑order 001) = 4𝑛𝑛
2𝑑𝑑001

≡ sin 𝜃𝜃 (1𝑠𝑠𝑠𝑠order 004) = 1𝑛𝑛
2𝑑𝑑004

 (S7) 

Note that the 𝑑𝑑001 = 2𝑑𝑑002 = 3𝑑𝑑003 = 4𝑑𝑑004, thus we can obtain the 𝑑𝑑001 value by knowing the 

𝑑𝑑004value. We have tabulated the calculation result of 𝑑𝑑hkl spacing of anatase based on the XRD 

pattern in Table S3-1. 

 

Table S3-1. The unit cell parameters of samples calculated using Bragg’s equation 

Samples 𝒅𝒅𝟎𝟎𝟎𝟎𝟎𝟎 𝒅𝒅𝟐𝟐𝟎𝟎𝟎𝟎 𝒅𝒅𝟎𝟎𝟎𝟎𝟎𝟎 𝒅𝒅𝟎𝟎𝟎𝟎𝟎𝟎 θ 

S-HT-500 2.3783 1.8921 9.5132 3.7842 68.3° 

S-500-HT 2.3764 1.8919 9.5056 3.7838 68.3° 

A-HT-500 2.3758 1.8934 9.5032 3.7868 68.3° 

A-500-HT 2.3799 1.8899 9.5196 3.7798 68.3° 

P25 Degussa 2.3810 1.8950 9.5240 3.7900 68.3° 
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Figure S3-1. The schematic of the anatase unit cell. 

The crystal system of anatase is tetragonal (I41/amd) with unit cell 𝑎𝑎 = 𝑏𝑏 ≠ 𝑐𝑐 ;  𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 90°, 

where 𝑎𝑎 = 𝑏𝑏 = 𝑑𝑑100 and 𝑐𝑐 = 𝑑𝑑001. We know θ is the angle between the (101) and (001) planes, 

as shown in Figure S3-1, where: 

θ = tan−1 𝑑𝑑001
𝑑𝑑100

 (S8) 

thus, using equation S8, we can calculate θ for each sample as tabulated in Table S3-1. 

Since the crystallite consists of several unit cells, thus the ratio of 𝑑𝑑100 to 𝑑𝑑001 is equal to the ratio 

of the average crystallite size along [100] direction (𝐷𝐷100) to the average crystallite size along 

[001] direction (𝐷𝐷001), which can be written as: 

θ = tan−1 𝑑𝑑001
𝑑𝑑100

= tan−1 𝐷𝐷001
𝐷𝐷100

≅ 68.3° (S9) 
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Figure S3-2. (a) HRTEM images of the calcined sample show the square−bipyramidal shape of 

crystallites. (b) Projected crystallites to {010} plane are depicted as blue hexagons and at higher 

magnification, (c) a hexagonal shaped crystallite shows vertical lattice fringes representing the 

{004} interplanar distance. (d) The geometric scheme of a truncated square−bipyramidal shaped 

anatase crystallite. 

 

The percentage of {001} facet can be calculated by knowing the crystallite truncated length (𝑎𝑎). 

We use the geometry approach to calculate the 𝑎𝑎 value since it has a relation with 𝐷𝐷100 and 𝐷𝐷001. 

The average crystallite size (𝐷𝐷ℎ𝑘𝑘𝑘𝑘) calculated using the Scherrer equation: 

𝐷𝐷ℎ𝑘𝑘𝑘𝑘 = 𝐾𝐾×𝑛𝑛
𝐵𝐵ℎ𝑘𝑘𝑘𝑘×cos𝜃𝜃ℎ𝑘𝑘𝑘𝑘

 (S10) 

Where 𝐷𝐷ℎ𝑘𝑘𝑘𝑘 is the mean crystallite size in [ℎ𝑘𝑘𝑘𝑘] direction, 𝐾𝐾 is a dimensionless shape factor (in 

this case, we use 𝐾𝐾 = 0.94), λ is the source X-ray wavelength (in this case, we use Cu 𝐾𝐾𝛼𝛼 = 1.540 

Å), 𝐵𝐵ℎ𝑘𝑘𝑘𝑘 is the line broadening at half the maximum intensity (FWHM) of (hkl) peak, 𝜃𝜃ℎ𝑘𝑘𝑘𝑘 is the 

Bragg angle. 

As shown in Figure S3-2, we can calculate the values of 𝑎𝑎 and l using the following equations: 
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𝑎𝑎 = 𝐷𝐷100 −
𝐷𝐷001
tan𝜃𝜃

 (S11) 

𝑘𝑘 = 𝐷𝐷001
2 sin𝜃𝜃

 (S12) 

The percentage of {001} facet can be calculated by dividing the area of (001) plane to the 

crystallite total surface area: 

𝐴𝐴{001} = 𝑎𝑎 × 𝑎𝑎 = �𝐷𝐷100 −
𝐷𝐷001
tan𝜃𝜃

�
2
 (S13) 

𝐴𝐴{101} = �𝐷𝐷100+𝑎𝑎
2

� × 𝑘𝑘 = �2𝐷𝐷100 −
𝐷𝐷001
tan𝜃𝜃

� × 𝐷𝐷001
2 sin𝜃𝜃

 (S14) 

%{001} facet =
�𝐷𝐷100−

𝐷𝐷001
tan𝜃𝜃�

2

�𝐷𝐷100−
𝐷𝐷001
tan𝜃𝜃�

2
+2𝐷𝐷001sin𝜃𝜃 �2𝐷𝐷100−

𝐷𝐷001
tan𝜃𝜃�

× 100 % (S15) 
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S4. The Rietveld refinement and the corresponding Williamson-Hall plot  

 
Figure S4. The Rietveld refinement results and the corresponding Williamson-Hall plot of (a) S-

HT-500, (b) S-500-HT, (c) A-HT-500, and (d) A-500-HT.  
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S5. N2 physisorption results 
 

 
Figure S5. N2 physisorption isotherm of (a) S-500 vs. S-500-HT and (b) A-500 vs. A-500-HT. 
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S6. HRTEM images of each synthesized step 
 

 
Figure S6. (a-c) TEM and (d-f) HRTEM images of samples: (a,d) as-synthesized, (b,e) 

hydrothermally-treated, and (c,f) calcined samples. The inset of (d-f) is the corresponding SAED 

pattern. 
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S7. Photodegradation of Rhodamine B 

 
Figure S7. Evolution of PL spectra of rhodamine B with respect to the irradiation time and the 

corresponding first-order kinetic plots. 


