Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Data

Effect of vacancy defects on the electromechanical properties of monolayer NiTe₂ monolayers from first principles

K. H. Yeoh^{1, 2}, K. -H. Chew^{3, 4}, Y.H.R. Chang⁵, T. L. Yoon⁶, and D. S. Ong⁷

¹Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia.

²Center for Photonics and Advanced Material Research, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia

³Zhejiang Expo New Materials Co. Ltd., 1066, Xincheng Times Avenue, Longgang, Wenzhou 325802, China.

⁴Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.

⁵Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Samarahan, Sarawak

⁶School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

⁷Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia.

^{a)} Author to whom correspondence should be addressed. Electronic mail: <u>khyeoh@utar.edu.my</u>, <u>keathoe.yeoh@gmail.com</u>, robincyh@uitm.edu.my Optimized structural coordinates of pristine monolayer 1T-NiTe2

CELL PARAMETERS (angstrom)

3.806267222	0.000000000	0.000000000
-1.903133607	3.296320913	0.000000000
0.000000000	0.000000000	21.000000000

ATOMIC POSITIONS (angstrom)

Ni	0.0000000000	0.0000322117	6.2973831511
Те	0.0000015671	2.1975798630	4.9384007687
Те	1.9031356804	1.0988050501	7.6565525903

Fig. S1. Stress-strain curve of the pristine 1T-NiTe₂ monolayer and the 1T-NiTe₂ monolayers with Ni or Te vacancies. Inset is the deformed crystal structure of the monolayer 1T-NiTe₂ with $V_{Ni} \ \theta = 1/12$ under the influence of bi-axial strain of 1.32%.

Fig. S1. Density of states (DOS) of pristine monolayer 1T-NiTe₂ for (a) q = -0.05 e/atom, (b) q = 0 e/atom and (c) q = +0.05 e/atom.

Fig. S3. Density of states (DOS) of the 1T-NiTe₂ monolayer with defects in the form of (a), (b), (c) V_{TeL} at $\theta = 1/12$ and (d), (e), (f) V_{TeH} at $\theta = 1/12$.

Fig. S4. Density of states (DOS) of the 1T-NiTe₂ monolayer with defects in the form of (a), (b), (c) V_{Ni} at $\theta = 1/27$, (d), (e), (f) V_{TeL} at $\theta = 1/27$ and (g), (h), (i) V_{TeH} at $\theta = 1/27$

Fig. S5. The charge density difference between the monolayer 1T-NiTe₂ with V_{TeL} and V_{TeH} at $\theta = 1/12$ and the superposition of the isolated atomic densities. The charge injection, *q* for (a) and (c) is -0.05 *e*/atom and for (b) and (d) is +0.05 *e*/atom. Red (blue) shaded region denotes the electron accumulation (depletion) region. The iso-surface is set at 0.009 *e*/bohr³. The green and bluish balls represent Te and Ni atoms, respectively.

Fig. S6. The charge density difference between the monolayer 1T-NiTe₂ with V_{Ni} , V_{TeL} and V_{TeH} at $\theta = 1/27$ and the superposition of the isolated atomic densities. The charge injection, q for (a), (c) and (e) is -0.05 *e*/atom and for (b), (d), (f) is +0.05 *e*/atom. Red (blue) shaded region denotes the electron accumulation (depletion) region. The iso-surface is set at 0.009 *e*/bohr³. The green and bluish balls represent Te and Ni atoms, respectively.

Fig. S7. Fluctuation of energy under AIMD simulations at 500 K for (a), (b) pristine monolayer 1T-NiTe₂, monolayer 1T-NiTe₂ with (c), (d) V_{TeL} at $\theta = 1/12$ (e), (f) V_{TeH} at $\theta = 1/12$. The evolution of the NiTe₂ crystal structures as a function of simulation time are provided in the movie clips

Fig. S8. Fluctuation of energy under AIMD simulations at 500 K for the monolayer 1T-NiTe₂ with (a), (b) V_{Ni} at $\theta = 1/27$, (c), (d) V_{TeL} at $\theta = 1/27$ and (e), (f) V_{TeH} at $\theta = 1/27$. The evolution of the NiTe₂ crystal structures as a function of simulation time are provided in the movie clips.

Table S1: Description of the movie clips provided in the Supplementary Data. These movie clips show the evolution of the NiTe₂ crystal structures as a function of AIMD simulation time at T=500K.

No.	File name	Description
1	Pristine.mpg	Pristine monolayer 1T-NiTe ₂ , $q = 0 e/atom$
2	Pristine-min.mpg	Pristine monolayer 1T-NiTe ₂ , $q = -0.074 \ e/atom$
3	Pristine-max.mpg	Pristine monolayer 1T-NiTe ₂ , $q = +0.074 \ e/atom$
4	2VTeL.mpg	Monolayer 1T-NiTe ₂ with V_{TeL} , $\theta = 1/12$, $q = 0$ e/atom
5	2VTeL-min.mpg	Monolayer 1T-NiTe ₂ with V_{TeL} , $\theta = 1/12$, $q = -0.068 \ e/atom$
6	2VTeL-max.mpg	Monolayer 1T-NiTe ₂ with V_{TeL} , $\theta = 1/12$, $q = +0.068 \ e/atom$
7	2VTeH.mpg	Monolayer 1T-NiTe ₂ with V_{TeH} , $\theta = 1/12$, $q = 0$ e/atom
8	2VTeH-min.mpg	Monolayer 1T-NiTe ₂ with V_{TeH} , $\theta = 1/12$, $q = -0.068 \text{ e/atom}$
9	2VTeH-max.mpg	Monolayer 1T-NiTe ₂ with V_{TeH} , $\theta = 1/12$, $q = +0.068$ e/atom
10	3VNi.mpg	Monolayer 1T-NiTe ₂ with V_{Ni} , $\theta = 1/27$, $q = 0$ e/atom
11	3VNi-min.mpg	Monolayer 1T-NiTe ₂ with V_{Ni} , $\theta = 1/27$, $q = -0.077 \ e/atom$
12	3VNi-max.mpg	Monolayer 1T-NiTe ₂ with V_{Ni} , $\theta = 1/27$, $q = +0.077 \ e/atom$
13	3VTeL.mpg	Monolayer 1T-NiTe ₂ with V_{TeL} , $\theta = 1/27$, $q = 0$ e/atom
14	3VTeL-min.mpg	Monolayer 1T-NiTe ₂ with V_{TeL} , $\theta = 1/27$, $q = -0.077 \ e/atom$
15	3VTeL-max.mpg	Monolayer 1T-NiTe ₂ with V_{TeL} , $\theta = 1/27$, $q = +0.077 \ e/atom$
16	3VTeH.mpg	Monolayer 1T-NiTe ₂ with V_{TeH} , $\theta = 1/27$, $q = 0$ e/atom
17	3VTeH-min.mpg	Monolayer 1T-NiTe ₂ with V_{TeH} , $\theta = 1/27$, $q = -0.077 \ e/atom$
18	3VTeH-max.mpg	Monolayer 1T-NiTe ₂ with V_{TeH} , $\theta = 1/27$, $q = +0.077 \text{ e/atom}$