Design of BPEA-based Derivatives with High Singlet Fission Performance: A theoretical Perspective

Jian Song*, Hongjin Li, Zhongpo Zhou, Yonggang Yang*, ChaoChao Qin, Yufang

Liu

School of Physics, HeNan Normal University, Xin Xiang City, 453007, China.

Corresponding Author: songjian@htu.edu.cn, yangyonggang@htu.edu.cn.

Further calculations are detailed in the Supplementary information. The crystal structure information of BPEA and its derivatives is given in Section A. Section B is about the selection of functionals and basis sets, and gives the detailed calculation data. Section C deals with further analysis of electronic states.

A. Crystal structure information

BPEA (C2/c)

BPEA (Pbcn)

1 (P21/C)

2 (P21/C)

Figure S1. Crystal packing structures and selected dimers of BPEA, derivative 1, 2, and 3. Data come from ref^{1,2 3}

	BPEA(C2/c)	BPEA (Pbcn)	1 (P21/C)	2 (P21/C)	3 (C2/C)
а	22.866(5) Å	24.305(4) Å	6.8920 (9) Å	24.7160 (10) Å	26.095(5) Å
b	5.3567(11) Å	11.512(1) Å	11.8321 (16) Å	5.2272 (2) Å	5.1784(11) Å
c	16.930(3) Å	7.099(1) Å	25.181 (4) Å	16.6641 (8) Å	16.585(3) Å
α	90 °	90 °	90 °	90 °	90 °
β	99.72(3) °	90 °	92.247 (6) °	95.493 (2) °	93.988(5)
γ	90 °	90 °	90 °	90 °	90 °
CCDC	715257	1205622	1909837	1907242	234275

Table S1. Summary of crystal parameters for **BPEA** and its derivatives, ref¹⁻³.

B. Selection of functional and basis group

Basis sets test

Table S2. Comparing the theoretical $E(S_1)$ and $E(T_1)$ of monomers calculated by different basis sets with experiments. The functional is $\omega B97X-D$ and the experimental data come from ref¹⁻³. (unit: eV).

		6-31g**	6-31+g**	6-311g**	6-	6-311++g**	Ехр
					311+g**		
BPEA	S_1	2.918	2.885	2.888	2.873	2.873	2.64
	T_1	1.339	1.349	1.348	1.351	1.351	
1	S_1	2.764	2.736	2.736	2.723	2.723	2.65
	T_1	1.138	1.153	1.149	1.154	1.154	1.12-1.3
2	S_1	2.793	2.763	2.763	2.751	2.751	2.59
	T_1	1.215	1.227	1.225	1.229	1.229	1.12-1.3
3	S_1	2.832	2.799	2.801	2.788	2.788	2.59
	T ₁	1.265	1.275	1.273	1.276	1.276	1.12-1.3

Figure S2. Comparing the theoretical $E(S_1)$ and $E(T_1)$ of monomers calculated by different basis sets with experiments. The experimental data come from ref¹⁻³.

Selection of functional

Table 62. Conversion the three without F(
Table S3. Comparing the theoretical E(S_1) and $E(I_1)$ of monomers calculated by
different functionals with experiments. T	he basis set is 6-311+g**. The experimental
data come from ref ¹⁻³ . (unit: eV).	

		PBE0	M06-2X	M06-HF	CAM- B3LYP	ωB97X-D	Ехр
BPEA	S_1	2.608	2.865	2.559	2.843	2.873	2.64
	T_1	1.358	1.741	1.376	1.257	1.351	
1	S_1	2.471	2.714	2.424	2.694	2.723	2.65
	T_1	1.203	1.577	1.219	1.052	1.154	1.12-1.3
2	S_1	2.473	2.737	2.432	2.718	2.751	2.59
	T_1	1.258	1.639	1.266	1.131	1.229	1.12-1.3
3	S_1	2.49	2.769	2.453	2.752	2.788	2.59
	T_1	1.293	1.672	1.309	1.179	1.276	1.12-1.3

Table S4. Comparing the theoretical $E(S_1)$ and $E(T_1)$ of dimers calculated by different functionals with experiments. The basis set is 6-311+g**. The experimental data come from ref¹⁻³. (unit: eV).

		PBE0	M06-2X	M06-HF	CAM-B3LYP	ωB97X-D	Ехр
BPEA	S_1	2.411	2.793	2.406	2.779	2.814	2.43
	T_1	1.329	1.694	1.315	1.236	1.325	1.24
1	S_1	2.306	2.667	2.306	2.652	2.682	2.48
	T_1	1.186	1.549	1.165	1.040	1.142	1.12-1.3
2	S1	2.277	2.666	2.273	2.658	2.691	2.34
	T_1	1.226	1.589	1.194	1.101	1.200	1.12-1.3
3	S1	2.301	2.704	2.297	2.701	2.735	2.34
	T_1	1.258	1.619	1.235	1.147	1.244	1.12-1.3

dat	data come from ref ¹⁻³ . (unit: eV).									
		PBE0	M06-2X	M06-HF	CAM-B3LYP	ωB97X-D	Ехр			
BPEA	monomer	-0.109	-0.616	-0.193	0.329	0.171	-			
	dimer	-0.247	-0.595	-0.224	0.307	0.164	0-0.19			
1	monomer	0.066	-0.439	-0.014	0.591	0.416	0.35-0.69			
	dimer	-0.065	-0.433	-0.025	0.571	0.398	0.1-0.42			
2	monomer	-0.044	-0.540	-0.100	0.455	0.292	0.35-0.69			

-0.115

-0.164

-0.173

0.456

0.394

0.407

0.292

0.237

0.248

0.1-0.42

0.35-0.69

0.1-0.42

dimer

monomer

dimer

3

-0.174

-0.096

-0.216

-0.511

-0.575

-0.534

Table S5. Comparing the theoretical $E(S_1-2T_1)$ of monomers and dimers calculated by different functionals with experiments. The basis set is 6-311+g**. The experimental data come from ref¹⁻³. (unit: eV).

Table S6. The calculated lowest three singlet excited state of the monomers of **BPEA** and its derivatives. The basis set is $6-311+g^{**}$. (unit: eV).

		PBE0	M06-2X	M06-HF	CAM-B3LYP	ωB97X-D
	S_1	2.608	2.865	2.559	2.843	2.873
BPEA	S ₂	3.740	3.930	3.644	3.895	3.913
	S₃	3.867	4.400	3.855	4.400	4.480
	S_1	2.471	2.714	2.424	2.694	2.723
1	S ₂	3.624	3.832	3.553	3.799	3.817
	S₃	3.648	4.172	3.625	4.205	4.290
	S_1	2.473	2.737	2.432	2.718	2.751
2	S ₂	3.477	3.898	3.476	3.867	3.886
	S ₃	3.704	4.085	3.612	4.116	4.227
	S_1	2.490	2.769	2.453	2.752	2.788
3	S ₂	3.471	3.885	3.485	3.853	3.872
	S_3	3.607	4.135	3.590	4.176	4.313

		PBE0	M06-2X	M06-HF	CAM-B3LYP	ωB97X-D
	T_1	1.358	1.741	1.376	1.257	1.351
BPEA	T_2	2.983	3.468	3.022	3.116	3.236
	T_3	3.132	3.569	3.171	3.246	3.370
1	T_1	1.203	1.577	1.219	1.052	1.154
	T_2	2.785	3.260	2.816	2.883	3.009
	T_3	2.886	3.367	2.915	2.959	3.089
	T_1	1.258	1.639	1.266	1.131	1.230
2	T_2	2.788	3.262	2.810	2.920	3.042
	T_3	2.927	3.407	2.949	3.023	3.150
	T_1	1.293	1.672	1.309	1.179	1.276
3	T_2	2.841	3.318	2.875	2.978	3.101
	T ₃	2.902	3.381	2.938	3.043	3.166

Table S7. The calculated lowest three triplet excited state of the monomers of **BPEA** and its derivatives. The basis set is $6-311+g^{**}$. (unit: eV).

Table S8. The calculated lowest three singlet excited state of the dimers of **BPEA** and its derivatives. The basis set is $6-311+g^{**}$. (unit: eV).

		PBE0	M06-2X	M06-HF	CAM-B3LYP	ωB97X-D
	S_1	2.411	2.793	2.406	2.779	2.814
BPEA	S_2	2.463	2.804	2.457	2.868	2.851
	S_3	2.614	3.266	2.608	3.317	3.596
1	S_1	2.306	2.666	2.306	2.652	2.682
	S_2	2.376	2.671	2.368	2.666	2.702
	S_3	2.430	3.120	2.439	3.228	3.456
	S_1	2.277	2.666	2.273	2.658	2.691
2	S_2	2.336	2.673	2.332	2.684	2.729
	S_3	2.471	3.113	2.468	3.221	3.447
	S_1	2.301	2.704	2.297	2.701	2.735
3	S_2	2.374	2.708	2.372	2.716	2.765
	S_3	2.487	3.144	2.485	3.251	3.478

		PBE0	M06-2X	M06-HF	CAM-B3LYP	ωB97X-D
	T_1	1.329	1.694	1.315	1.236	1.325
BPEA	T ₂	1.362	1.737	1.364	1.248	1.358
	T ₃	2.517	3.220	2.547	3.047	3.215
	T_1	1.186	1.549	1.165	1.040	1.142
1	T ₂	1.209	1.577	1.198	1.063	1.164
	T ₃	2.379	3.079	2.419	2.857	2.982
	T_1	1.226	1.589	1.194	1.101	1.199
2	T ₂	1.265	1.638	1.251	1.143	1.239
	T ₃	2.382	3.083	2.415	2.908	3.030
	T_1	1.258	1.619	1.235	1.147	1.244
3	T ₂	1.301	1.672	1.295	1.191	1.287
	T ₃	2.411	3.121	2.445	2.969	3.092

Table S9. The calculated lowest three triplet excited state of the dimers of **BPEA** and its derivatives. The basis set is $6-311+g^{**}$. (unit: eV).

C Analysis of the Electronic States

Figure S3. The CDDs of S_1 and T_1 and the heat map of $S_0 \rightarrow S_1$ transition density matrix (TDM) for all **BPEA** derivatives.

	X	Y	Z	Dip
CN	4.3665	-0.0003	0.0056	19.0667
Cl	4.2134	-0.0001	0.0063	17.7528
Br	4.3028	0.0001	0.0077	18.5139
1	3.7261	0.1563	0.0178	13.9088
BPEA	-3.6421	0.0544	0.0609	13.2714
Me	4.1181	-0.0003	-0.0052	16.9591
3	-2.7349	-0.3573	-2.7922	15.4032
ОН	-4.0493	-0.0001	-0.0055	16.3966

Table S10 The calculated transition electric dipole moments of the monomers of BPEA and its derivatives. The methods is ω B97X-D with 6-311+G**. (unit: Au).

Figure S4. The Transition dipole moment direction of **BPEA** monomer.

Figure S5.The natural orbital(orbit214->orbit215) diagram of the transition of derivative 1 from the ground state to the first two singlet excited states at the minima point in the X direction.(x=6.7Å)

	BPEA	1	2	3	Br	Cl	CN	Me	ОН
	(6.9Å)	(6.7Å)	(6.9Å)	(6.7Å)	(6.7Å)	(6.7Å)	(6.9Å)	(6.7Å)	(6.7Å)
S ₁	2.4896	2.4828	2.4596	2.4314	2.3830	2.4136	2.3786	2.4351	2.4577
S ₂	2.6147	2.6134	2.5853	2.5725	2.5733	2.5854	2.5552	2.5940	2.6065
S ₃	3.4673	3.4431	3.3364	3.2905	3.4005	3.4155	3.3971	3.4023	3.3910
S ₄	3.5029	3.4806	3.4734	3.3516	3.4599	3.4664	3.4506	3.4511	3.5128
S ₅	3.6767	3.6878	3.7248	3.7189	3.6648	3.6712	3.6464	3.6709	3.6829
T ₁	1.0386	1.0372	1.0359	1.0325	1.0001	1.0118	1.0020	1.0199	1.0281
T ₂	1.0934	1.0926	1.0821	1.0789	1.0761	1.0807	1.0749	1.0851	1.0940
T ₃	2.7784	2.7627	2.7295	2.7016	2.6873	2.7026	2.6613	2.7400	2.7462
T ₄	2.9641	2.9511	2.9212	2.8929	2.8730	2.8940	2.8441	2.9466	2.9440
T ₅	3.0260	2.9983	2.9448	2.9426	2.8875	2.9035	2.8695	2.9899	2.9813

Table S11 The first five excitation energies of the singlet and triplet states of BPEA and its derivatives at the minima point in the X direction. (unit: eV)

Reference

¹Y. J. Bae, J. A. Christensen, G. Kang, J. Zhou, R. M. Young, Y. L. Wu, R. P. Van Duyne, G. C. Schatz, and M. R. Wasielewski, J Chem Phys **151** (4), 044501 (2019).

² Y. J. Bae, G. Kang, C. D. Malliakas, J. N. Nelson, J. Zhou, R. M. Young, Y. L. Wu, R. P. Van Duyne, G. C. Schatz, and M. R. Wasielewski, J Am Chem Soc **140** (45), 15140 (2018).

³ Biswajit Manna, Amitabha Nandi, and Rajib Ghosh, The Journal of Physical Chemistry C **122** (36), 21047 (2018).