Effect of Sr^{2+} ions on the structure, upconversion emission and thermal sensing of Er^{3+} , Yb^{3+} codoped double perovskites $Ba_{(2-x)}Sr_xMgWO_6$ phosphors

Guoyi Dong¹, Kexin Zhang¹, Mengrui Dong¹, Xiangxiang Li¹, Zhenyang Liu¹, Lei Zhang^{2*}, Nian Fu^{1*}, Li Guan, Xu Li¹, Fenghe Wang^{1*}

¹ Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China

² Hebei Key Laboratory of Optoelectronic Information and Geo-detection Technology, Hebei GEO University, Shijiazhuang, China 050031

Supplementary Fig. S1. Rietveld refined XRD pattern of the Sr_2MgWO_6 :7%Er³⁺, 2%Yb³⁺,9%K⁺

^{*} Corresponding author: <u>funian@hbu.edu.cn</u> (N. Fu); <u>zzll1012@163.com</u> (L. Zhang); <u>fenghe_wang@hotmail.com</u> (F. H. Wang)

Supplementary Fig. S2. SEM images of (a)Ba₂MgWO₆:7%Er³⁺, 2%Yb³⁺, 9%K⁺ and (b)Sr₂MgWO₆:7%Er³⁺, 2%Yb³⁺, 9%K⁺

Supplementary Fig. S3. (a-c) EDS of the $Ba_{2-x}Sr_xMgWO_6$:7%Er³⁺, 2%Yb³⁺, 9%K⁺ (x= 0,1, 2)

Supplementary Fig. S4. (a-c) XPS spectra of $Ba_{2-x}Sr_xMgWO_6:7\%Er^{3+}$, 2%Yb³⁺, 9%K⁺ (x= 0,1, 2)

Supplementary Fig. S5. (a-c) Effect of changing Sr^{2+} doping concentration on cell parameters

Supplementary Fig. S6. (a-c) Williomson-Hall plot of $Ba_{2-x}Sr_xMgWO_6:7\%Er^{3+}$, 2%Yb³⁺, 9%K⁺ (x= 0,1, 2)

$$\begin{split} & \textbf{Supplementary Fig. S7. } Up conversion emission spectra of (a) $$Sr_2Mg_{0.93}WO_6:7\%Er^{3+}$, $$Sr_2Mg_{0.91}WO_6:7\%Er^{3+}$, $$2\%Yb^{3+}$; $$(b) $$Sr_2Mg_{0.91}WO_6:7\%Er^{3+}$, $$2\%Yb^{3+}$, $$9\%A^+(A = K^+, Li^+, Na^+)$ \end{split}$$

Supplementary Fig. S8. Luminescence decay curves of (a) $Sr_2Mg_{0.93}WO_6$:7%Er³⁺, $Sr_2Mg_{0.91}WO_6$:7%Er³⁺, 2%Yb³⁺ (b) $Ba_{(2-x)}Sr_xMgWO_6$ (x=0, 1, 2):7%Er³⁺, 2%Yb³⁺, 9%K⁺

Supplementary Fig. S9. XRD sample of $Sr_2Mg_{1-m}WO_6$: $m\%Er^{3+};Sr_2Mg_{0.93-n}WO_6$: $7\%Er^{3+}/n\%Yb^{3+}$ (m= 0.05,1, 3, 5, 7, 10/n= 1, 2, 4, 8, 15)

Supplementary Fig. S10. Raman spectra of $Ba_{2-x}Sr_xMgWO_6:7\%Er^{3+}$, 2%Yb³⁺, 9%K⁺(x= 0, 1, 2)

Supplementary Fig. S11. Kubelka-Munk plot $\ln(F(R))$ vs. energy plot of Sr_2MgWO_6 :7%Er³⁺, 2%Yb³⁺,9%K⁺, Inset shows urbach energy plot of $Ba_{2-x}Sr_xMgWO_6$:7%Er³⁺, 2%Yb³⁺, 9%K⁺ (x=0,0.5, 1, 1.5,2)

Supplementary Fig. S12. (a)Power-dependent spectra of Sr_2MgWO_6 :7%Er³⁺, 2%Yb³⁺, 9%K⁺, (b) Red to green ratio of Sr_2MgWO_6 :7%Er³⁺, 2%Yb³⁺, 9%K⁺ emission peak with laser power

Supplementary Fig. S13. PLE spectrum ($\lambda_{em} = 565 \text{ nm}$) of 7 mol%Er³⁺, 2 mol%Yb³⁺: Sr₂MgWO₆ and PL spectra ($\lambda_{ex} = 378 \text{ nm}$) of 2 mol%Er³⁺, n mol%Yb³⁺: Sr₂MgWO₆ (n = 1, 2, 4, 8, 15).

Supplementary Fig. S14. Changes in FIR (I527 nm/I553 nm) values for repeated tests between 303 K and 573 K