Redox exfoliated NbS₂: characterization, stability, and oxidation

Danilo A. Nagaoka^{a,b}, Daniel Grasseschi^c, Alisson R. Cadore^a, Jessica E. Fonsaca^{a,b}, Ali

M. Jawaid^d, Richard A. Vaia^d, Christiano J. S. de Matos^{a,b*}

^a School of Engineering, Mackenzie Presbyterian University, São Paulo - 01302-907, Brazil

 ^b MackGraphe, Mackenzie Presbyterian Institute, São Paulo - 01302-907, Brazil
^c Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro - 21941-909, Brazil.

^d Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson AFB, Ohio 45433, United States

* corresponding author: cjsdematos@mackenzie.br

Supporting Information (SI)

Text S1. The equations used to fit the absorbance spectra that generate the kinects profile are described above.

Equations

Equation S1

$$A_t = (A_f - A_0) \times (1 - e^{-k_1 t}) + A_0$$

Where:

 A_f = final absorbance of oxidation process A_0 = initial absorbance of oxidation process k_1 = formation constant of NbSO

Equation S2

$$\begin{array}{c} \displaystyle \frac{\kappa_1}{(-\ln 81\,(\frac{t-t_{m1}}{\Delta t_1}))} & \frac{\kappa_2}{(-\ln 81\,(\frac{t-t_{m2}}{\Delta t_2}))} \\ A_t = A \times (1 \text{-} e^{-k_2 t}) + 1 + e & + 1 + e \end{array}$$

Where:

A = absorbance constant k_2 = formation constant of NbSO κ_1 and κ_2 = asymptotic absorbance values $\Delta t_{1,2}$ = midpoint time of the respective processes $t_{m1,2}$ = characteristic formation times Table S1. Kinetic parameters obtained by fitting data in Figure 7c according to Biologistic Model, Equation S2.

Kinetic parameter	Values
κ ₁	0.62806 ± 0.03528
Δt ₁	185.9 s
t _{m1}	375.83 s
K ₂	0.13664 ± 0.02311
Δt ₂	15.5 s
t _{m2}	235.3 s
k ₂	2.5×10 ⁻⁴ s ⁻¹

Figure S1. Scanning electron microscopy (SEM) of the $FL-NbS_2$ obtained.

Figure S2. X-Ray diffraction (XRD) comparison between NbS₂ bulk and FL-exfoliated.

Figure S3. Optical images of the NbS_2 : (a) exposed sample before annealing, (b) and (c) different clusters formed after annealing, small and larger respectively.

Figure S4. Differential scanning calorimetry (DSC) of the FL-NbS₂.

Figure S5. Raman modes after thermal annealing of the sample (NbS₂).

Figure S6. Projected band structure for the NbS₂.

Figure S7. Projected band structure for the NbO₂.

Figure S8. Raw Raman spectra of the redox exfoliated NbS_2 for various exposure times to ambient conditions. Time evolves from top to bottom, where the top spectrum corresponds to the sample measured in an inert environment and the last corresponds to the spectrum after 240 minutes of exposure.