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The excitation density for TA measurements is calculated as follows:

 (1)
𝜌 = 𝛼 ∙

𝑃𝑖𝑛

𝐸𝛾
 [𝑐𝑚 ‒ 3]

Where the absorption coefficient, α (Equation 2), depends on the measured absorption, which is 
wavelength dependent, Abs, in O.D., see Figure 1, and on the thickness of the sample, in this case, 50 
nm:

(2)
𝛼 =

𝐴𝑏𝑠(𝜆)
𝑙

∙ 107[𝑐𝑚 ‒ 1]

The incident power per pulse, Pin (Equation 3) is calculated from the measurement of the incident 
pump power Ppump, adjusted with a gradient neutral density filter, the laser repetition rate = 1 kHz, 
and the measured pump-beam radius, r:

(3)
𝑃𝑖𝑛 =  

𝑃𝑝𝑢𝑚𝑝[𝜇𝑊]

𝑅𝑅 ∙  𝜋𝑟2
 [𝐽 ∙ 𝑐𝑚 ‒ 2 𝑝𝑒𝑟 𝑝𝑢𝑙𝑠𝑒]

The photon energy, Eγ (Equation 4), for each wavelength measured in nm, using Planck’s constant 
and the speed of light:

(4)
𝐸𝛾 = ℎ ∙

𝑐
𝜆

 [𝐽/𝛾]

Table S1. Excitation density at each excitation wavelength for the α-CuPc thin film.

Wavelength (nm) 580 620 680 720

Ex. Density (cm-3) 1·1018 1·1018 8·1017 9·1017
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Table S2. Excitation density at each excitation wavelength for the β-CuPc thin film.

Wavelength (nm) 580 620 680 720

Ex. Density (cm-3) 2·1018 2·1018 7·1018 4·1018

(b)(a)

 Figure S1. GIWAXS patterns of (a) α-CuPc (as-depositied) and (b) β-CuPc (annealed) thin films. Only the major reflection of 
the phases are assigned by the Miller index, while dashed boxes indicate reflections related to intracolumnar CuPc packing 
(white – α-herringbone, orange – α-brickstone, green – β-phase).

The as-deposited film reveals a characteristic α-herringbone structure (J. Am. Chem. Soc. 2012, 134, 
14302−14305) with CuPc molecules arranged perpendicular to the substrate (Figure S1a). As indicated 
by the wide-angle reflections (white dashed box in Figure S1a), the molecules are in-plane shifted 
towards each other resulting in an interplanar distance of 3.45 Å and Cu-Cu distance of 3.75 Å. After 
annealing, the scattering intensities form arcs due to a broader orientation of the crystallites towards 
the surface (Figure S1b). Furthermore, the coexistence of two phases is identified based on the 
assignment of the reflections. New wide-angle reflections (orange dashed box in Figure S1b) are 
characteristic for the α-brickstone structure with interplanar and Cu-Cu distances of 3.49 Å and 3.85 
Å, respectively, as well as a CuPc tilt angle of 75° with respect to the surface. Additionally, reflections 
for the β-phase are found in which the CuPc adapt a larger molecular displacement in the stacks 
resulting in Cu-Cu distance of 4.95 Å and interplanar distance 3.30 Å (green boxes in Figure S1b).  
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Figure S2. TA measurements with increasing excitation density are used to elucidate the ΔA signal that arises due to local 
heating effects for (a) α-CuPc and (b) β-CuPc thin films. 
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Figure S3. Normalised spectral traces at selected delay times for α-CuPc and β-CuPc thin films indicate that heating 
artefacts, evidenced by the blue shifting of the GSB and appearance of other features shown in Figure S1, appear later 
delay times (> 100 ps). 
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Figure S4. Comparison of Decay-Associated Difference Spectra for (a) α-CuPc and (b) β-CuPc thin films show an excitation 
dependent lineshape  between 550-600 nm for α-CuPc that does not appear for β-CuPc 
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Figure S5. The spectral lineshape at Δt = 1 ps  and 10 ps  for α-CuPc at different excitation densities are similar, further 
confirming that the excitation wavelength dependent feature is not a heating artefact.


