Electronic Supplementary Information

for

Symmetry Breaking Charge Transfer and Intersystem Crossing in Copper Phthalocyanine Thin Films

Esther del Pino Rosendo,^a Okan Yildiz, ^a Wojciech Pisula, ^{a,b} Tomasz Marszalek, ^{a,b} Paul W.M. Blom ^a and Charusheela Ramanan* ^{a,c}

^oMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, DE; ^b Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; ^cDepartment of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands E-mail: c.ramanan@vu.nl

The excitation density for TA measurements is calculated as follows:

$$\rho = \alpha \cdot \frac{P_{in}}{E_{\gamma}} [cm^{-3}]$$
⁽¹⁾

Where the absorption coefficient, α (Equation 2), depends on the measured absorption, which is wavelength dependent, *Abs*, in O.D., see Figure 1, and on the thickness of the sample, in this case, 50 nm:

$$\alpha = \frac{Abs(\lambda)}{l} \cdot 10^7 [cm^{-1}]$$
⁽²⁾

The incident power per pulse, P_{in} (Equation 3) is calculated from the measurement of the incident pump power P_{pump} , adjusted with a gradient neutral density filter, the laser repetition rate = 1 kHz, and the measured pump-beam radius, r:

$$P_{in} = \frac{P_{pump}[\mu W]}{RR \cdot \pi r^2} [J \cdot cm^{-2} per pulse]$$
(3)

The photon energy, E_{ν} (Equation 4), for each wavelength measured in nm, using Planck's constant and the speed of light:

$$E_{\gamma} = h \cdot \frac{c}{\lambda} \left[J/\gamma \right] \tag{4}$$

Table S1. Excitation density at each excitation wavelength for the α -CuPc thin film.

Wavelength (nm)	580	620	680	720	
Ex. Density (cm ⁻³)	1·10 ¹⁸	1·10 ¹⁸	8·10 ¹⁷	9·10 ¹⁷	

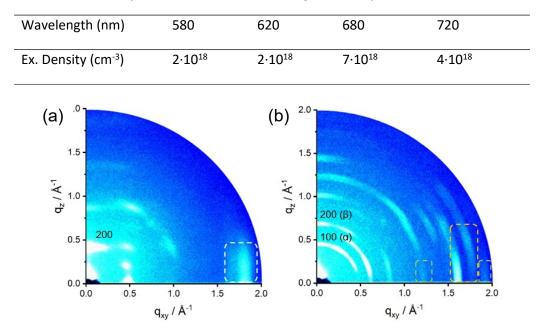
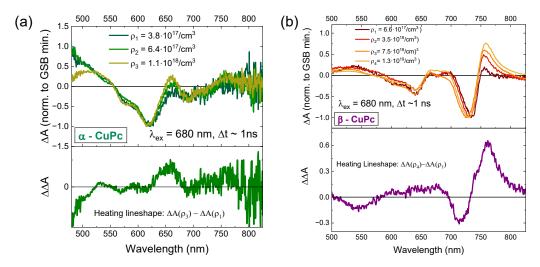
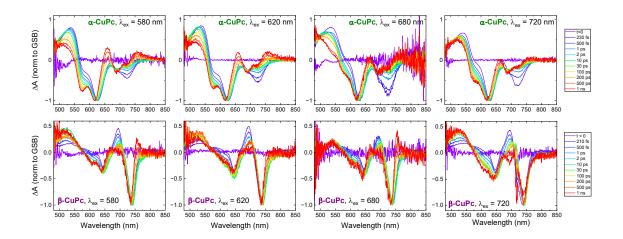
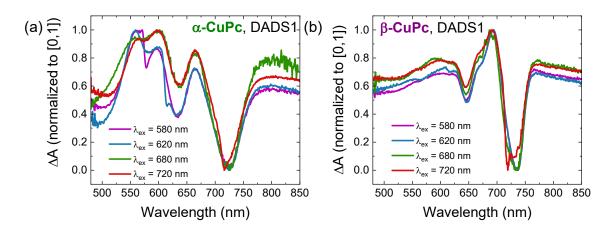


Table S2. Excitation density at each excitation wavelength for the β -CuPc thin film.

Figure S1. GIWAXS patterns of (a) α -CuPc (as-depositied) and (b) β -CuPc (annealed) thin films. Only the major reflection of the phases are assigned by the Miller index, while dashed boxes indicate reflections related to intracolumnar CuPc packing (white – α -herringbone, orange – α -brickstone, green – β -phase).

The as-deposited film reveals a characteristic α -herringbone structure (J. Am. Chem. Soc. 2012, 134, 14302–14305) with CuPc molecules arranged perpendicular to the substrate (Figure S1a). As indicated by the wide-angle reflections (white dashed box in Figure S1a), the molecules are in-plane shifted towards each other resulting in an interplanar distance of 3.45 Å and Cu-Cu distance of 3.75 Å. After annealing, the scattering intensities form arcs due to a broader orientation of the crystallites towards the surface (Figure S1b). Furthermore, the coexistence of two phases is identified based on the assignment of the reflections. New wide-angle reflections (orange dashed box in Figure S1b) are characteristic for the α -brickstone structure with interplanar and Cu-Cu distances of 3.49 Å and 3.85 Å, respectively, as well as a CuPc tilt angle of 75° with respect to the surface. Additionally, reflections for the β -phase are found in which the CuPc adapt a larger molecular displacement in the stacks resulting in Cu-Cu distance of 4.95 Å and interplanar distance 3.30 Å (green boxes in Figure S1b).

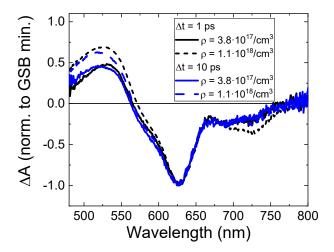

Figure S2. TA measurements with increasing excitation density are used to elucidate the ΔA signal that arises due to local heating effects for (a) α -CuPc and (b) β -CuPc thin films.

Figure S3. Normalised spectral traces at selected delay times for α -CuPc and β -CuPc thin films indicate that heating artefacts, evidenced by the blue shifting of the GSB and appearance of other features shown in Figure S1, appear later delay times (> 100 ps).

Figure S4. Comparison of Decay-Associated Difference Spectra for (a) α -CuPc and (b) β -CuPc thin films show an excitation dependent lineshape between 550-600 nm for α -CuPc that does not appear for β -CuPc

Figure S5. The spectral lineshape at $\Delta t = 1$ ps and 10 ps for α -CuPc at different excitation densities are similar, further confirming that the excitation wavelength dependent feature is not a heating artefact.