Supplementary Information

Real-time observation of the Woodward-Hoffmann rule for 1,3-cyclohexadiene by

femtosecond soft X-ray transient absorption

Taro Sekikawa,^{1*} Nariyuki Saito,² Yutaro Kurimoto,¹ Nobuhisa Ishii,³ Tomoya Mizuno,² Teruto Kanai,² Jiro Itatani,² Kenichiro Saita,⁴ and Tetsuya Taketsugu^{4,5}

¹ Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

² Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

³ Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa 619-0215, Japan.

⁴ Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

⁵ Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan

Fig. S1. Cross-correlation measurement between the pump and probe pulses by the AC Stark shift of Ar atoms. (a) Spectrogram of the AC Stark shift of the $2p_{3/2} \rightarrow 3d$ absorption line. (b) Temporal evolution of the absorbance change at 247.3 eV. The solid line is the fitting result to the Gaussian function.

Fig. S2. Time-resolved photoelectron spectra of CHD. a) Photoelectron spectrum before pump (black) and the spectra at 154 fs (blue), 607 fs (red), and 1000 fs (green). The solid squares indicate the theoretical ionization energies of 1,3-cyclohexadiene. The spectrum of the excited states integrated between -140 and 250 fs is shown by the purple line below 8 eV. b) Photoelectron spectrogram between -0.2 and 2 ps. (Replot of Fig. 4 in ref 18 with permission from the Royal Society of Chemistry.)

Fig. S3. (a) Experimentally observed yield of the 19th harmonic [identical to Fig. 4b]. The horizontal red lines show the average values of the data points (black dots) within the range of the length of each red line. (b) Short-time Fourier spectra of the transient harmonic yield [black dots in (a)]. (Replot of Fig. 5 in ref 21 with permission from the Optical Society of America)

Table S1. Cartesian coordinates (in Å) of the key structures, **CHD**, **TS1**, *cZc*-HT, *cZt*-HT, and *tZt*-HT, in the disrotatory reaction pathway. **TS1** is the disrotatory transition state which connects two equilibrium structures **CHD** and *cZc*-HT by the intrinsic reaction coordinate (IRC). The IRC was computed at B3LYP-D3/cc-pVDZ level of theory.

Atom	Х	у	Ζ
С	1.204414024748	0.194063030519	-0.795001942760
С	0.066301788867	-0.328763702087	0.051865495176
С	0.068947775583	-0.132010412223	1.383878870708
С	1.191323142311	0.554997807423	2.035690776124
С	2.354470252371	0.738998442708	1.382856986293
С	2.531273675124	0.201871271723	-0.019310412057
Н	1.308569851191	-0.391655858665	-1.722267313817
Н	0.953460302793	1.228668116528	-1.110039101804
Н	-0.784935404725	-0.807039799239	-0.440925333082
Н	-0.773834193372	-0.460419621452	1.998358738512
Н	1.071093441695	0.894084751561	3.068294957220
Н	3.204095652649	1.217332291473	1.878358104099
Н	2.923233917141	-0.834253806763	0.054601915469
Н	3.291417802334	0.778256285704	-0.570419604690

TS1 : $E(S_0) = -233.368601278395$ hartree, <	$ = 0.0000000000000000000000000000000000$	0
--	---	---

Atom	Х	у	Z
С	0.927757194600	-0.099364818000	-0.970519529800
С	0.029270343800	-0.426602281500	0.054406645200
С	0.018876083900	0.142146363200	1.332672570700
С	1.178977451400	0.572558363900	2.008159076800
С	2.469171991300	0.478539781500	1.475137902900
С	2.794800405900	0.593040763700	0.116572417000
Н	1.064241350700	-0.816861989300	-1.788784555300
Н	0.986266794300	0.934913645400	-1.289583791400
Н	-0.617914894800	-1.303334034900	-0.083180855400
Н	-0.856458476900	-0.046057528600	1.963729036700
Н	1.086075432600	0.674689342500	3.094806362400
Н	3.247497207600	0.130714976100	2.167720241400
Н	3.752227487700	0.179896938200	-0.223481688000
Н	2.506258921700	1.498470041800	-0.404859311200

cZc -HT: E(S ₀) = -233.400585023787 hartree, $\langle S^2 \rangle$	> = 0.0000000000000000000000000000000000
--	--

Atom	Х	у	Ζ
С	0.362278862371	0.096914728746	-1.168635160686
С	-0.033107722869	-0.547553875444	-0.060576651405
С	0.166706356812	-0.132711004174	1.337232119046
С	1.184551469480	0.528094555306	1.934877221781
С	2.496324923488	0.956728544818	1.423645500536

С	3.269091170593	0.326765847827	0.526190778094
Н	0.108426274414	-0.286013003452	-2.159983436968
Н	0.946475591300	1.018526609715	-1.118780615233
Н	-0.644900067635	-1.450912046919	-0.180391748181
Н	-0.669513559167	-0.402292485852	1.994311973052
Н	1.023755667993	0.785566672205	2.989165076655
Н	2.896590048999	1.857558999472	1.906322675398
Н	4.254160360033	0.718797305563	0.261919469859
Н	2.943198304187	-0.591592763310	0.032692897674

Atom	Х	У	Z
С	2.477124477498	0.674883932373	0.094210445496
С	1.156775078440	0.469976231119	0.250980288570
С	0.542322606246	-0.849275490226	0.263176088215
С	-0.781723093864	-1.137702200760	0.307690324208
С	-1.917846939575	-0.212313494068	0.260443945372
С	-2.021280023892	0.903860199001	-0.481120651630
Н	2.905027759116	1.679420121731	0.116784833198
Н	3.168346666805	-0.158457040127	-0.067265908303
Н	0.497108754011	1.329540092999	0.403048781007
Н	1.240130271927	-1.694758441755	0.279095289138
Н	-1.054213381300	-2.193779304844	0.418926879588
Н	-2.783632993599	-0.510548971308	0.865999300379
Н	-2.922887459309	1.520135092141	-0.446107587542
Н	-1.227266643958	1.217440699201	-1.163266778363

$tZt-HT: E(S_0) = -233$.415894962494 hartree.	$=$	0.000000000000
-------------------------	------------------------	-----	----------------

Atom	Х	У	Z
С	2.818129172513	0.235210402410	-0.112360114537
С	1.476664305263	0.337304198848	-0.141370942227
С	0.580742936644	-0.674825970119	0.393993470094
С	-0.776549968574	-0.642241712907	0.400454179176
С	-1.627934467629	0.411792462586	-0.126680725643
С	-2.972421444489	0.374375910265	-0.084513321185
Н	3.459562717613	1.016635054467	-0.524876326215
Н	3.312387133590	-0.637017509881	0.326908754431
Н	1.029171458557	1.229113075058	-0.591552704716
Н	1.069182070811	-1.550843416386	0.835656884538
Н	-1.302253540961	-1.493891158858	0.846979772377
Н	-1.142495483751	1.281119969595	-0.581458251988
Н	-3.579503595135	1.185752428573	-0.491192102401
Н	-3.503787391897	-0.473094784068	0.359909802773

Atom	Х	у	Z
С	0.927757194600	-0.099364818000	-0.970519529800
С	0.029270343800	-0.426602281500	0.054406645200
С	0.018876083900	0.142146363200	1.332672570700
С	1.178977451400	0.572558363900	2.008159076800
С	2.469171991300	0.478539781500	1.475137902900
С	2.794800405900	0.593040763700	0.116572417000
Н	1.064241350700	-0.816861989300	-1.788784555300
Н	0.986266794300	0.934913645400	-1.289583791400
Н	-0.617914894800	-1.303334034900	-0.083180855400
Н	-0.856458476900	-0.046057528600	1.963729036700
Н	1.086075432600	0.674689342500	3.094806362400
Н	3.247497207600	0.130714976100	2.167720241400
Н	3.752227487700	0.179896938200	-0.223481688000
Н	2.506258921700	1.498470041800	-0.404859311200

Table S2. Cartesian coordinates (in Å) of the key structures, **CHD**, **TS2**, *cEc*-HT, *cEt*-HT, and *tEt*-HT, in the conrotatory reaction pathway. **TS2** is the conrotatory transition state which connects two equilibrium structures **CHD** and *cEc*-HT by the intrinsic reaction coordinate (IRC). The IRC was computed at B3LYP-D3/cc-pVDZ level of theory. ^{*a*}This geometry came from the end point of the conrotatory IRC, and this structure is identical to **CHD** structure in the disrotatory IRC listed in Table S1.

Atom	Х	У	Z
С	0.261582208255	0.722570680709	-1.177508889835
С	-0.044289810589	1.426505026367	0.125092736558
С	-0.098445417215	0.727625047253	1.274711578166
С	0.098561088662	-0.727636814610	1.274722640416
С	0.044431702498	-1.426510987740	0.125108194683
С	-0.261522907746	-0.722593620780	-1.177472796535
Н	-0.153371468794	1.277879321471	-2.033791338752
Н	1.363012189048	0.717837990616	-1.317166556300
Н	-0.153901365517	2.514718532942	0.126700325801
Н	-0.267635456876	1.234571658028	2.228693907453
Н	0.267966755408	-1.234554280620	2.228694182766
Н	0.153984818871	-2.514705424486	0.126671763660
Н	-1.362971320065	-0.717831614525	-1.316983445955
Н	0.153324437487	-1.277953134127	-2.033764182555

Atom	Х	У	Z
С	0.725004425500	1.072256195300	-1.017455631200
С	0.014355905200	1.526951794300	0.120236010900
С	-0.321075740200	0.653620412100	1.137339253500
С	0.321075749600	-0.653620425100	1.137339302800
С	-0.014355928600	-1.526951786800	0.120236043600
С	-0.725004322900	-1.072256081600	-1.017455717500
Н	0.767084376900	1.713644270700	-1.902766699900
Н	1.460812722800	0.274629205000	-0.961437505900
Н	-0.543547996100	2.466219249200	0.031820097900
Н	-1.294333667100	0.788887110000	1.625071498700
Н	1.294333720400	-0.788887172300	1.625071478600
Н	0.543547865400	-2.466219332600	0.031820119200
Н	-1.460812635100	-0.274629080600	-0.961437563900
Н	-0.767084475900	-1.713644357600	-1.902766686700

cEc-HT:	$E(S_0) = $	-233.4074	463518297	hartree,	$=$	0.000000000	0000
---------	-------------	-----------	-----------	----------	-----	-------------	------

Atom	Х	у	Ζ
С	1.352112888585	2.312445303562	-0.294194832370
С	0.164747032164	1.931507130936	0.207922584055
С	-0.367784609555	0.567593205834	0.233591188057

С	0.367754170603	-0.567592759622	0.233599995669
С	-0.164758151773	-1.931499801966	0.207789272769
С	-1.352061803843	-2.312433430950	-0.294466017271
Н	1.677472831004	3.354090692781	-0.246576441741
Н	2.027630686731	1.600580887976	-0.777085298607
Н	-0.492884901479	2.702097961452	0.627794878982
Н	-1.458611810135	0.480296010320	0.294427308125
Н	1.458572824972	-0.480281125287	0.294617215555
Н	0.492845176147	-2.702098098783	0.627671486830
Н	-2.027531151523	-1.600577709989	-0.777430963633
Н	-1.677356467916	-3.354115007147	-0.247073473287

Atom	Х	у	Z
С	1.438726002599	2.299528490643	-0.128450192038
С	0.159615884279	1.903144394611	-0.006621391804
С	-0.311982144523	0.550475892074	0.293926697377
С	0.381312560272	-0.598753926982	0.118279644236
С	-0.132393028310	-1.914112474254	0.454197590299
С	0.547058139769	-3.062296167014	0.278953184640
Н	1.686402814876	3.334694291952	-0.373051096735
Н	2.275200283810	1.611366703223	0.022602699122
Н	-0.627504410772	2.657509010787	-0.122415797551
Н	-1.335326236772	0.477055407084	0.681499458212
Н	1.387845580459	-0.560637734350	-0.315020085312
Н	-1.143065113986	-1.949548662492	0.879273780339
Н	1.557821430594	-3.065574647141	-0.140469354482
Н	0.116282655448	-4.028339730247	0.550004100685

Atom	Х	у	Z
С	-0.327211843317	3.054940267588	0.445989274926
С	-0.124063921762	1.863023598482	-0.144598473114
С	-0.115042959967	0.591857340609	0.555406717372
С	0.089885664033	-0.606188973372	-0.042446483162
С	0.099104964815	-1.877307245124	0.657646118595
С	0.302275222984	-3.069277177655	0.067146827861
Н	-0.324153410834	3.984414582151	-0.126971212759
Н	-0.502929544945	3.132203254976	1.523371586183
Н	0.048744431637	1.824537980862	-1.227142747392
Н	-0.286831461705	0.622118878172	1.638816957173
Н	0.262041071435	-0.636389513665	-1.125848716692
Н	-0.073170405552	-1.838675607770	1.740262744515
Н	0.477255607177	-3.146732349332	-1.010329720149
Н	0.299489739982	-3.998660201568	0.640254041765

Table S3. Cartesian coordinates (in Å) of **CHD cation** in the cationic ground state. This geometry was optimized at B3LYP-D3/cc-pVDZ level of theory.

Atom	Х	У	Z
С	0.079449382100	0.764067259800	-1.216813910200
С	-0.024506760400	1.416245446000	0.105659638600
С	-0.033443653500	0.707768520500	1.300652978400
С	0.033443653500	-0.707768520500	1.300652978400
С	0.024506760400	-1.416245446000	0.105659638600
С	-0.079449382100	-0.764067259800	-1.216813910200
Н	-0.617778734100	1.251543194400	-1.922404662700
Н	1.075498204900	1.055830482800	-1.620292351400
Н	-0.052528339300	2.510223784000	0.135701051500
Н	-0.078068162200	1.245604195100	2.250304255900
Н	0.078068162200	-1.245604195200	2.250304255900
Н	0.052528339400	-2.510223784000	0.135701051400
Н	-1.075498204900	-1.055830482800	-1.620292351400
Н	0.617778734000	-1.251543194400	-1.922404662800

CHD cation: $E(D_0) = -233.146342193951$ hartree, $\langle S^2 \rangle = 0.750025495088$

Oscillator strength (f)

Fig. S4. Computed absorption spectra along the disrotatory pathway. The value *s* stands for the reaction coordinate [Å amu^{1/2}] where s = 0 corresponds to CHD (see **Figs. 5a** and **6a**).

S13

Fig. S5. Computed absorption spectra along the conrotatory pathway. The value *s* stands for the reaction coordinate [Å amu^{1/2}] where s = 0 corresponds to CHD (see **Figs. 5b** and **6b**).

Structure	State	ω_i / eV	f	Primary excitation	Coeff.
CHD	1634	282.7688	0.1255	$3a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.62428
	1636	283.1304	0.1071	$5a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.60812
	1633	283.0102	0.1118	$1a \rightarrow 24a \ (C_{1s} \rightarrow \pi^*)$	0.55988
TC1	1635	283.0319	0.0478	$6a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.50121
151	1636	283.0361	0.0997	$5a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.48712
	1638	283.3448	0.1351	$4a \rightarrow 24a \ (C_{1s} \rightarrow \pi^*)$	0.49740
	1633	282.5548	0.0958	$5a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.54782
	1634	282.5562	0.0248	$6a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.54788
cZc-HT	1635	282.8526	0.1032	$4a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.49214
	1637	283.0629	0.0209	$3a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.51551
	1638	283.0636	0.1014	$2a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.42316
	1633	281.6656	0.0589	$6a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.64077
	1634	281.6763	0.0446	$5a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.63936
	1635	281.9497	0.1138	$1a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.63686
TCA	1636	281.9565	0.0125	$2a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.63704
152	1637	283.1704	0.0244	$4a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.59745
	1638	283.1704	0.0350	$3a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.59648
	1639	284.2208	0.0136	$3a \rightarrow 24a \ (C_{1s} \rightarrow \pi^*)$	0.46426
	1640	284.2210	0.0744	$4a \rightarrow 24a \ (C_{1s} \rightarrow \pi^*)$	0.46508
	1633	282.5665	0.0308	$6a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.56751
	1634	282.5668	0.0881	$5a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.56745
cEc-HT	1635	282.7384	0.1046	$4a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.63838
	1637	283.0629	0.0228	$1a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.52848
	1638	283.0639	0.0963	$2a \rightarrow 23a \ (C_{1s} \rightarrow \pi^*)$	0.53418

Table S4. List of excited states with the oscillator strength f greater than 0.1 in the region of the peak X (core excitation energy $\omega_i = 280-285$ eV) of the five key structures of the neutral state, CHD, cZc-HT, cEc-HT, TS1, and TS2, computed at TD-BHHLYP/cc-pCVDZ level of theory.

Fig. S6. Low-lying valence (occupied and virtual) molecular orbitals of the five key structures of the neutral state, **CHD**, **cZc-HT**, **cEc-HT**, **TS1**, and **TS2**, computed at BHHLYP/cc-pCVDZ level of theory. The character and orbital energy of each MO are also indicated.

Fig. S7. Energies of the molecular orbitals which are related to the excitations listed in **Table S4**, computed at BHHLYP/cc-pCVDZ level of theory.

Fig. S8. Absorption spectra of CHD in the ground state, CHD cation at FC state, and the optimized (relaxed) CHD cation.