**Electronic Supplementary Information** 

## Aromatic heterocyclic anion based ionic liquids and electrolytes

Mukhtiar Ahmed<sup>1</sup>, Soniya S. Rao<sup>2</sup>, Andrei Filippov<sup>1</sup>, Patrik Johansson<sup>2\*</sup>, and Faiz Ullah Shah<sup>1\*</sup>

<sup>1</sup>Chemistry of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden <sup>2</sup>Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

> \*Corresponding authors: patrik.johansson@chalmers.se faiz.ullah@ltu.se

## Synthesis and Characterization

(**P**<sub>4444</sub>)(**3**-**PyrA**): Transparent yellowish room temperature liquid. MS (ESI). [C<sub>16</sub>H<sub>36</sub>P]<sup>+</sup>: Calcd m/z 259.2556. Found m/z 259.2555, [C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>]<sup>-</sup>: Calcd m/z 122.0247, Found m/z 122.0222. <sup>1</sup>H NMR (400.21 MHz, CDCl<sub>3</sub>), <sup>δ</sup>(ppm): 9.19-9.20 (m, 1H), 8.47-8.49 (m, 1H), 8.28-8.21 (m, 1H), 7.17-7.20 (m, 1H), 2.31-2.36 (m, 8H, P-CH<sub>2</sub>-), 1.42-1.51 (m, 16H, -CH<sub>2</sub>-), 0.93-0.96 (t, 3*J*<sub>HH</sub> = 7.1 Hz, 12H, -CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100.64 MHz, CDCl<sub>3</sub>): 169.88, 151.33, 149.58, 136.97, 135.52, 122.60, 24.17, 24.02, 23.93, 23.88, 19.05, 18.58, 13.56 ppm. <sup>31</sup>P NMR (162.01 MHz, CDCl<sub>3</sub>): 33.12 ppm.

(**P**<sub>4444</sub>)(**4**-**PyrA**): White solid, MS (ESI). [C<sub>16</sub>H<sub>36</sub>P]<sup>+</sup>: Calcd m/z 259.2556. Found m/z 259.2562, [C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>]<sup>-</sup>: Calcd m/z 122.0247. Found m/z 122.0188.<sup>1</sup>H NMR (400.21 MHz, CDCl<sub>3</sub>), <sup>δ</sup>(ppm): 8.52-8.54 (m, 2H), 7.82-7.84 (m, 2H), 2.29-2.36 (m, 8H, P-CH<sub>2</sub>-), 1.46-1.49 (m, 16H, -CH<sub>2</sub>-), 0.90-0.93 (t, 3*J*<sub>HH</sub> = 7.1 Hz, 12H, -CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100.64 MHz, CDCl<sub>3</sub>): 169.77, 148.16, 123.72, 24.17, 24.02, 23.92, 23.87, 19.04, 18.58, 13.56 ppm. <sup>31</sup>P NMR (162.01 MHz, CDCl<sub>3</sub>): 33.10 ppm.

(P<sub>4444</sub>)(2-PyrA): Yellowish gel. MS (ESI).  $[C_{16}H_{36}P]^+$ : Calcd m/z 259.2556. Found m/z 259.2535, MS (ESI).  $[C_6H_4NO_2]^-$ : Calcd m/z 122.0247, Found m/z 122.0212. <sup>1</sup>H NMR (400.21 MHz, CDCl<sub>3</sub>), <sup>8</sup>(ppm): 8.36-8.37 (m, 1H), 7.90-7.92 (m, 1H), 7.42-7.45 (m, <sup>1</sup>H), 6.95-6.98 (m, 1H), 2.19-2.27 (m, 8H, P-CH<sub>2</sub>-), 1.25-1.34 (m, 16H, -CH<sub>2</sub>-), 0.72-0.74 (t,  $3J_{HH} = 7.1$  Hz, 12H, -CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100.64 MHz, CDCl<sub>3</sub>): 170.56, 158.10, 148.48, 135.74, 123.94, 123.10, 24.21,24.12, 24.06, 19.10, 18.63, 13.65 ppm. <sup>31</sup>P NMR (162.01 MHz, CDCl<sub>3</sub>): 33.08 ppm.

 $(P_{4444})(2,5-PyrA)$ : Transparent yellow room temperature liquid. MS (ESI).  $[C_{16}H_{36}P]^+$ : Calcd m/z 259.2556. Found m/z 259.2562, MS (ESI).  $[C_6H_4NO_2]^-$ : Calcd m/z 123.0200, Found m/z 123.0146. <sup>1</sup>H NMR (400.21 MHz, CDCl<sub>3</sub>),  $\delta$ (ppm): 8.52-8.54 (m, 2H), 7.82-7.84 (m, 2H), 2.29-

2.36 (m, 8H, P-CH<sub>2</sub>-), 1.46-1.49 (m, 16H, -CH<sub>2</sub>-), 0.90-0.93 (t,  $3J_{HH} = 7.1$  Hz, 12H, -CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100.64 MHz, CDCl<sub>3</sub>): 168.78, 152.64, 146.21, 143.81, 143.39, 24.26, 24.10, 24.05, 19.17, 18.70, 13.65 ppm. <sup>31</sup>P NMR (162.01 MHz, CDCl<sub>3</sub>): 33.19 ppm.

(P<sub>4444</sub>)(Pyr-2,6-diA): White crystalline solid. MS (ESI).  $[C_{16}H_{36}P]^+$ : Calcd m/z 259.2556. Found m/z 259.2562,  $[C_7H_3NO_4]^{2-}$ : Calcd m/z 165.10412, Found m/z 166.0146. Found m/z 389.157. <sup>1</sup>H NMR (400.21 MHz, CDCl<sub>3</sub>), <sup> $\delta$ </sup>(ppm): 8.09-8.11 (m, 2H), 7.59-7.61 (m, 1H), 2.21-2.27 (m, 16H, P-CH<sub>2</sub>-), 1.36-1.37 (m, 32H, -CH<sub>2</sub>-), 0.84-0.87 (t, 3*J*<sub>HH</sub> = 7.1 Hz, 24H, -CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100.64 MHz, CDCl<sub>3</sub>): 170.39, 155.85, 135.85, 124.22, 24.02, 23.99, 23.95, 23.87, 18.93, 18.46, 13.65 ppm. <sup>31</sup>P NMR (162.01 MHz, CDCl<sub>3</sub>): 32.80 ppm.



Figure S1. <sup>1</sup>H NMR spectrum of (P<sub>4444</sub>)(3-PyrA) in CDCl<sub>3</sub>.



Figure S2. <sup>1</sup>H NMR spectrum of (P<sub>4444</sub>)(2-PyrA) in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR spectrum of (P<sub>4444</sub>)(4-PyrA) in CDCl<sub>3</sub>.



Figure S4. <sup>1</sup>H NMR spectrum of (P<sub>4444</sub>)(2,5-PyrA) in CDCl<sub>3</sub>.



Figure S5. <sup>1</sup>H NMR spectrum of (P<sub>4444</sub>)(Pyr-2,6-diA) in CDCl<sub>3</sub>.



Figure S6. <sup>13</sup>C NMR spectrum of (P<sub>4444</sub>)(2-PyrA) in CDCl<sub>3</sub>.



Figure S7. <sup>13</sup>C NMR spectrum of (P<sub>4444</sub>)(3-PyrA) in CDCl<sub>3</sub>.



Figure S8. <sup>13</sup>C NMR spectrum of (P<sub>4444</sub>)(4-PyrA) in CDCl<sub>3</sub>.



Figure S9. <sup>13</sup>C NMR spectrum of (P<sub>4444</sub>)(2,5-PyrA) in CDCl<sub>3</sub>.



Figure S10. <sup>13</sup>C NMR spectrum of (P<sub>4444</sub>)(Pyr-2,6-diA) in CDCl<sub>3</sub>.



Figure S11. <sup>31</sup>P NMR spectrum of (P<sub>4444</sub>)(2-PyrA) in CDCl<sub>3</sub>.



Figure S12. <sup>31</sup>P NMR spectrum of (P<sub>4444</sub>)(3-PyrA) in CDCl<sub>3</sub>.



Figure S13. <sup>31</sup>P NMR spectrum of (P<sub>4444</sub>)(4-PyrA) in CDCl<sub>3</sub>.



Figure S14. <sup>31</sup>P NMR spectrum of (P<sub>4444</sub>)(2,5-PyrA) in CDCl<sub>3</sub>.



Figure S15. <sup>31</sup>P NMR spectrum of (P<sub>4444</sub>)(Pyr-2,6-diA) in CDCl<sub>3</sub>.



Figure S16. ESI-MS of (P<sub>4444</sub>)(2-PyrA)



Figure S17. ESI-MS of (P<sub>4444</sub>)(3-PyrA)



Figure S18. ESI-MS of (P<sub>4444</sub>)(4-PyrA)



Figure S19. ESI-MS of (P<sub>4444</sub>)(2,6-PyrA)



Figure S20. ESI-MS of (P<sub>4444</sub>)(Pyr-2,6-diA)



Figure S21. Heating and cooling cycles of the ionic conductivity of  $(P_{4444})(3-PyrA)$ 



Figure S22. <sup>31</sup>P NMR spectra of (a)  $[(P_{4444})(2,5-PyrA)]$  (b)  $[(P_{4444})(3-PyrA)]$  (c)  $[(P_{4444})(2,5-PyrA)]_{0.9}[(Li)(2,5-PyrA)]_{0.1}$  and (d)  $[(P_{4444})(3-PyrA)]_{0.9}[(Li)(3-PyrA)]_{0.1}$  and <sup>7</sup>Li NMR (e)  $[(P_{4444})(3-PyrA)]_{0.9}[(Li)(3-PyrA)]_{0.9}[(Li)(3-PyrA)]_{0.1}$  as a function of temperature.



(a) 2-PyrA (-709 kJ mol<sup>-1</sup>)

(b) 4-PyrA (-666 kJ mol<sup>-1</sup>)

Figure S23: Optimized geometries of the various Li<sup>+</sup>–ion-pairs for: (a) (2-PyrA)<sup>–</sup> and (b) (4-PyrA)<sup>–</sup>, and including coordination bond distances and association

energies.

| Table S1   | . VFT   | equation p   | parameters | and apparen | nt activation | energies | for ionic | conductivity | of the |
|------------|---------|--------------|------------|-------------|---------------|----------|-----------|--------------|--------|
| ionic liqu | iids an | id the elect | rolytes.   |             |               |          |           |              |        |

|                                                     | $\sigma_0$ | <i>B</i> ,K | $T_{0}, \mathbf{K}$ | Еσ,      |
|-----------------------------------------------------|------------|-------------|---------------------|----------|
| System                                              | mS/cm      |             |                     | kJ/(mol) |
| $(P_{4444})(3-PyrA)$                                | 1.218      | 1381        | 156                 | 11.4     |
|                                                     |            |             |                     |          |
| (P <sub>4444</sub> ) (2,5-PyrA)                     | 0.135      | 1496        | 150                 | 12.4     |
| $[(P_{4444})(3-PyrA)]_{0.9} [Li(3-PyrA)]_{0.1}$     | 2.352      | 1600        | 148                 | 13.3     |
| $[(P_{4444})(2,6-PyrA)]_{0.9} [Li(2,6-PyrA)]_{0.1}$ | 0.216      | 1626        | 143                 | 13.5     |

|                                                                           |                                   | $D_0 \times 10^{-8}$ | <i>B,</i> K | $T_0, \mathbf{K}$ | $E_D$ ,  |
|---------------------------------------------------------------------------|-----------------------------------|----------------------|-------------|-------------------|----------|
| System                                                                    | ion                               | m²/s                 |             |                   | kJ/(mol) |
| (P <sub>4444</sub> ) (3-PyrA)                                             | (3-PyrA) <sup>-</sup>             | 1.55                 | 800         | 213               | 6.7      |
|                                                                           | (P <sub>4444</sub> ) <sup>+</sup> | 1.49                 | 826         | 211               | 6.9      |
|                                                                           |                                   |                      |             |                   |          |
| [(P <sub>4444</sub> )(3-PyrA)] <sub>0.9</sub> [Li(3-PyrA)] <sub>0.1</sub> | (3-PyrA) <sup>-</sup>             | 5.07                 | 1100        | 200               | 9.2      |
|                                                                           | $(P_{4444})^+$                    | 3.36                 | 1000        | 204               | 8.3      |
|                                                                           | Li <sup>+</sup>                   | 6.46                 | 1124        | 205               | 9.3      |
|                                                                           |                                   |                      |             |                   |          |
| (P <sub>4444</sub> ) (2,5-PyrA)                                           | (2,6-                             | 1.53                 | 853         | 210               | 7.1      |
|                                                                           | PyrA)-                            | 1.59                 | 892         | 207               | 7.4      |
|                                                                           | $(P_{4444})^+$                    |                      |             |                   |          |
|                                                                           |                                   |                      |             |                   |          |
| $[(P_{4444})(2,5-PyrA)]_{0.9} [Li(2,5-PyrA)]_{0.1}$                       | (2,6-                             | 3.20                 | 990         | 205               | 8.2      |
|                                                                           | PyrA) <sup>-</sup>                | 3.03                 | 998         | 205               | 8.3      |
|                                                                           | $(P_{4444})^+$                    | 3.50                 | 1024        | 205               | 8.5      |
|                                                                           | Li <sup>+</sup>                   |                      |             |                   |          |

Table S2. VFT equation parameters and apparent activation energies for ion diffusivity of the ionic liquids and the electrolytes.

Table S3. Anodic and cathodic limits, and electrochemical stability windows (ESWs) of the neat ionic liquids and the electrolytes at  $0.10 \text{ mA cm}^{-2}$  cut-off current density using GC as WE at 293K *vs*. Li/Li<sup>+</sup>.

| System                                                                    | $E_{\rm A}({ m V})$ | $E_{\rm C}({\rm V})$ | $\Delta E(\mathbf{V})$ |
|---------------------------------------------------------------------------|---------------------|----------------------|------------------------|
| (P <sub>4444</sub> ) (3-PyrA)                                             | 4.97                | 1.39                 | 3.57                   |
| [(P <sub>4444</sub> )(3-PyrA)] <sub>0.9</sub> [Li(3-PyrA)] <sub>0.1</sub> | 5.03                | 1.29                 | 3.74                   |
|                                                                           |                     |                      |                        |
| $(P_{4444})(2,5-PyrA)$                                                    | 4.09                | 1.27                 | 2.82                   |
| $[(P_{4444})(2,5-PyrA)]_{0.9} [Li(2,5-PyrA)]_{0.1}$                       | 4.15                | 1.02                 | 3.13                   |

Table S4: Main interacting donor and acceptor NBOs and the second order perturbation energy E for the  $(2-PyrA)^-$  anion and its Li<sup>+</sup> ion-pair.

|                  | <b>—</b>           | <b>2</b> D t |                         |  |
|------------------|--------------------|--------------|-------------------------|--|
| From             | 10                 | 2-PyrA       | L1 <sup>+</sup> -2-PyrA |  |
| Donor NBO        | Acceptor NBO       | E (kcal/mol) |                         |  |
| σ C1 – N1        | $\pi * C4 - C5$    | 42.75        | 199.20                  |  |
| $\pi$ C2 – C3    | <i>σ</i> * C1 – N1 | 33.50        | 44.21                   |  |
| $\pi$ C2 – C3    | $\pi$ *C4 – C5     | 26.45        | 25.74                   |  |
| $\pi$ C4 – C5    | $\sigma * C1 - N1$ | 21.50        | 22.73                   |  |
| $\pi$ C4 – C5    | <i>π</i> *C2 –C3   | 29.34        | 179.32                  |  |
| LP O2            | <i>π</i> *Ca –O1   | 134.73       | 27.61                   |  |
| $\sigma C1 - N1$ | <i>π</i> *Ca –O1   | 48.80        | 34.21                   |  |
| $\pi$ C4 – C5    | $\sigma * C1 - N1$ | 161.29       | 22.73                   |  |
| $\pi$ C4 – C5    | σ*C2 –C3           | 218.62       | 28.88                   |  |
| LP O 1           | $\pi$ *Ca – O2     | 23.25        | 99.84                   |  |
| LP O1            | $\sigma * C1 - Ca$ | 26.24        | 15.46                   |  |
| LP O2            | σ*C1−Ca            | 22.65        |                         |  |
| LP N1            | $\sigma * C4 - C5$ | 11.31        | 8.50                    |  |
| LP N1            | σ*C1 –C2           | 10.70        | 9.48                    |  |
| σ C1 – N1        | <i>π</i> *C2 –C3   | 19.69        | 133.03                  |  |
| σ C1 – N1        | <i>π</i> *Ca–O2    |              | 34.21                   |  |
| $\sigma C1 - N1$ | <i>π</i> *C4 –C5   | 42.75        | 35.24                   |  |

Table S5: Main interacting donor and acceptor NBOs and the second order perturbation energy E for the  $(3-PyrA)^-$  anion and its Li<sup>+</sup> ion-pair.

| From              | То                 | 3-PyrA     | Li <sup>+</sup> –3-PyrA |  |
|-------------------|--------------------|------------|-------------------------|--|
| Donor NBO         | Acceptor NBO       | E kcal/mol |                         |  |
| σ C1 – N1         | $\pi * C4 - C5$    | 38.10      |                         |  |
| $\sigma C 3 - C2$ | $\sigma * C1 - N1$ | 40.42      |                         |  |
| $\sigma C 3 - C2$ | $\pi * C4 - C5$    | 28.78      |                         |  |
| $\pi$ C4 – C5     | σ*C1 –N1           | 22.84      |                         |  |
| $\pi$ C4 – C5     | σ*C3–C2            | 27.78      |                         |  |
| LP O1             | $\pi * C2 - Ca$    | 22.86      | 18.41                   |  |
| LP O1             | $\pi$ *Ca – O2     | 142.82     | 18.89                   |  |
| LP O2             | $\pi^*C2 - Ca$     | 22.97      | 18.52                   |  |
| LP O2             | $\pi * Ca = O1$    | 22.80      | 19.03                   |  |
| σ C1 – N1         | $\sigma * C3 - C2$ | 124.99     |                         |  |
| $\sigma C4 - C3$  | $\pi$ *Ca – O2     | 73.94      |                         |  |
| $\sigma C4 - C3$  | $\sigma * C3 - C2$ | 92.60      |                         |  |
| LP N1             | σ*C1–C2            | 9.70       |                         |  |
| LP N1             | σ*C1–H             | 4.61       |                         |  |
| LP N1             | σ*C1-C5            | 10.40      |                         |  |
| LP N1             | <i>σ</i> *C5–H     | 5.14       |                         |  |
| σ C 5– N1         | $\sigma$ *C1 – C2  |            | 210.51                  |  |
| σ C3– N1          | $\sigma * C3 - C4$ |            | 242.33                  |  |
| $\pi$ C1–C2       | $\sigma * C5 - N1$ |            | 24.35                   |  |
| $\pi$ C1–C2       | $\sigma * C3 - C4$ |            | 33.66                   |  |
| σ C3–C4           | σ*C1-C2            |            | 23.89                   |  |
| $\sigma C3-C4$    | σ*C5–N1            |            | 40.90                   |  |

Table S6: Main interacting donor and acceptor NBOs and the second order perturbation energy E for the  $(4-PyrA)^-$  anion and its Li<sup>+</sup> ion-pair.

| From             | То                  | 4-PyrA     | Li <sup>+</sup> -4-PyrA |  |
|------------------|---------------------|------------|-------------------------|--|
| Donor NBO        | Acceptor NBO        | E kcal/mol |                         |  |
| $\pi C 1 - C2$   | $\sigma * C4 - C3$  | 29.99      | 32.27                   |  |
| $\pi C 1 - C2$   | $\sigma * C5 - N1$  | 27.04      | 28.31                   |  |
| $\sigma C4 - C3$ | $\pi * C1 - C2$     | 26.05      | 25.51                   |  |
| $\sigma C4 - C3$ | $\sigma * C5 - N1$  | 45.80      | 36.67                   |  |
| $\sigma C5 - N1$ | $\pi * C 1 - C2$    | 33.25      | 34.96                   |  |
| LP O2            | $\sigma * C3 - Ca$  | 23.22      | 0.99                    |  |
| LP O2            | $\sigma$ *Ca – O1   | 22.57      | 18.95                   |  |
| LP O2            | LP*Ca               | 244.22     | 206.27                  |  |
| LP O1            | $\sigma * C3 - Ca$  | 23.22      | 18.79                   |  |
| LP O1            | $\pi$ *Ca – O2      | 22.57      | 18.96                   |  |
| $\pi C 1 - C2$   | $\sigma * C4 - C3$  | 168.46     | 3.25                    |  |
| σ C5 – N1        | $\pi * C1 - C2$     | 145.58     | 217.56                  |  |
| σ C5 – N 1       | $\sigma * C 4 - C3$ | 90.27      | 256.64                  |  |
| LP N1            | $\pi * C1 - C2$     | 9.86       | 10.22                   |  |
| LP N1            | <i>σ</i> *C1–H      | 4.98       | 5.15                    |  |
| LP N1            | <i>π</i> *C4–C5     | 9.86       | 10.22                   |  |
| LP N1            | <i>σ</i> *C5–H      | 4.98       | 5.15                    |  |

Table S7: Main interacting donor and acceptor NBOs and the second order perturbation energy E for the  $(2,5-PyrA)^-$  anion and its Li<sup>+</sup> ion-pair.

| From              | То                  | 2,5-PyrA | Li <sup>+</sup> –2,5-PyrA |
|-------------------|---------------------|----------|---------------------------|
| Donor NBO         | Acceptor NBO        | E k      | ccal/mol                  |
| σ C1 – N1         | <i>σ</i> * C 2 – N2 | 25.55    | 19.85                     |
| $\sigma C1 - N1$  | $\sigma * C3 - C4$  | 37.33    | 31.59                     |
| $\sigma C2 - N2$  | $\sigma * C1 - N1$  | 22.42    | 28.30                     |
| $\sigma C2 - N2$  | $\pi * C3 - C4$     | 33.10    | 34.08                     |
| $\sigma C3 - C4$  | <i>σ</i> * C1 – N1  | 24.15    | 27.60                     |
| $\sigma$ C3 – C 4 | <i>σ</i> * C2 – N2  | 26.38    | 26.37                     |
| LP O2             | $\sigma$ *C1 – Ca   | 23.08    | 26.34                     |
| LP O2             | σ*Ca–O1             | 136.53   | 27.69                     |
| LP O1             | σ*C1−Ca             | 26.78    | 15.92                     |
| LP O1             | $\sigma$ *Ca – O2   | 23.23    | 99.57                     |
| $\sigma C1 - N1$  | $\sigma$ *Ca – O1   | 44.14    | 30.33                     |
| $\sigma$ C2 – N2  | $\sigma * C1 - N1$  | 225.77   | 218.96                    |
| $\pi C3 - C4$     | σ*C1 – N1           | 155.98   | 174.89                    |