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S1 Particle size distribution of Pd-Pt nanoparticles 

Particle size distributions of Pd-Pt samples are characterized by TEM method, shown in Figure S1. These 

samples possess different diameter distributions.  
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Figure S1. Particle size distribution of Pd-Pt nanoparticles characterized by TEM method 

 

 

S2 External and internal diffusion for catalytic reaction 

To eliminate the influence of external and internal diffusion of catalytic reactions, we performed the diffusion 

experiment, see Figure S2. When the total flow rate was higher than 200 mL/min, external diffusion was 

eliminated and reaction rates did not vary with changing WHSV. And the diameters of catalyst pellets should be 

lower than 0.1 mm, to eliminate the internal diffusion for catalytic reaction.  
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Figure S2. Inspection and elimination of external and internal diffusion for catalytic reaction (a, external 

diffusion; b, internal diffusion; “W” stands for catalyst mass loading (1 g) and “F” stands for total flow rate 

(mL/min) 

 

 

S3 Catalytic performance of Pd and Pt species 

   Figure S3 displays methane catalytic reaction rates over monometallic Pd (7.73 nm) and Pt (6.68 nm) catalysts 

at 300 ℃. Methane pressure was set at 0.5 kPa, and oxygen pressure varied in a wide range from 0.001 kPa to 50 

kPa. As the oxygen pressure was varied, we found that the Pd and Pt species showed different catalytic 

performances in the reaction. Pt species are highly active at low oxygen pressures, whereas Pd species show high 

catalytic performances under oxygen-rich conditions. 
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Figure S3. Methane catalytic reaction rate over monometallic Pd (7.73 nm) and Pt (6.68 nm) catalyst (0.5 

kPa CH4, N2 balance, 300℃) 

 

 

S4 Particle model 

   Figure S4 shows the cubo-octahedron model for monometallic Pt and bimetallic Pd-Pt catalysts. The crystals 

formed by Pd or Pt element have face-centered cubic structure. Atomic radius of Pd is 1.79 Å, and Pt is 1.83 Å. 

For bimetallic Pd–Pt catalysts, Pd and Pt were randomly distributed on the particle surface.  

 

 

 

Figure S4. Catalyst particle model for monometallic Pt and bimetallic Pd-Pt catalysts 

 

 

S5 Assignments of infrared absorption bands 

   Table S1 displays the assignments of infrared absorption bands used for deconvolution of Pd-Pt catalysts. In 

this experiment, CO molecules flowed through catalyst bed and adsorbed on surface active sites. MCT detector 

received infrared signal of catalyst surface species, and vibration signal of C-O bond was selected to identify the 

type of surface active sites [1, 2]. Via CO uptake, wavenumber of infrared spectrum of C-O bond vibration located 

in the range of 1700 cm-1 to 2300 cm-1 [3, 4]. To depict the structure of CO adsorption in detail, we performed 

spectral deconvolution over “Peak-Fitting” software via methodology of “Deconvolution- AutoFit”. The spectral 

deconvolution was adjusted according to the following information in Table S1. Peak center location and full 

widths at half height (FWHH) were limited in a small variation range with error of ±2 cm-1 wavenumber. So we 

mainly adjusted the height parameter to do spectral deconvolution. The determination coefficient (R2) was higher 

than 0.98, which was used to evaluate the reasonability of fitting outcomes statistically.  



 

 

 

Table S1. Assignments of infrared absorption bands used for deconvolution of Pd-Pt catalysts [5-12] 

Structure Assignment Wavenumber [cm-1] FWHH [cm-1] 

IR peak assignments for Pd species 

 
CO three-fold adsorption on Pd0 1890 115 

 
CO bridged adsorption on Pd0 terraces and edges, respectively 1940, 1985 58, 27 

 
CO linear adsorption on Pd0 edges and terraces, respectively 2060, 2080 25, 21 

 
CO bridged adsorption on Pd+ 1970 54 

 
CO linear adsorption on Pd+ and Pd2+, respectively 2105, 2145 25, 96 

IR peak assignments for Pt species 

 
CO bridged adsorption on Pt0 1820 80 

 
CO linear adsorption on Pt0 corners and edges 2040, 2065, 2085 55, 25, 35 

 
CO adsorption on Pt0 terraces 2097 6 

 
CO adsorption on Ptδ+ 2115 32 

Note: The error of wavenumber is ±2 cm-1.  
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