Supplementary Information

for

Theoretical Study on the Photochemical Generation of

Phenylborylene from Phenyldiazidoborane

Di Mu, Quan-Song Li*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China

E-mail: liquansong@bit.edu.cn

Contents					
Table SI1. CASPT2 energies of the critical points optimized by CASSCF.	SI3				
Table SI2. TD-B3LYP vertical excitations at $1-S_0$.	SI9				
Table SI3. TD-CAM-B3LYP vertical excitations at $1-S_0$.	SI10				
Table SI4. CASPT2 vertical excitations at $3-S_0$.	SI11				
Table SI5. CASPT2 vertical excitations at $4-S_0$.	SI12				
Table SI6. Structure difference of $1-S_0$ and $1-S_1$ by TD-DFT and CASSCF	SI13				
Figure SI1. The (10,10) active orbitals of 7 in the CASPT2 calculations.	SI14				
Figure SI2. The $(8,8)$ active orbitals of 8 in the CASPT2 calculations.	SI15				
Figure SI3. DFT-optimized ground-state structure of 1.	SI16				
Figure SI4. CASPT2 energy profiles for the first dinitrogen extrusion from the three conformers of $PhBN_6$ in S_1 state.	SI17				
Figure SI5. CASPT2 energy plot from $1-S_0$ to $1-S_1$.	SI18				

Figure SI6. CASPT2 energy plot from TS1-S ₁ to $(S_1/S_0)_x$ -a.	SI19
Figure SI7. CASPT2 energy plot from $(S_1/S_0)_x$ -a to 2-S ₀ .	SI20
Figure SI8. CASPT2 energy plot along shorten C-N distance from $(S_1/S_0)_x$ -a.	SI21
Figure SI9. CASPT2 energy plot and key points structures for $2-S_0$ to $5-S_0$.	SI22
Figure SI10. CASPT2 energy plot from $2-S_0$ to $4-S_0$.	SI23
Figure SI11. CASPT2 energy plot from $2-S_0$ to $5-S_0$.	SI24
Figure SI12. CASPT2 energy plot from $3-S_0$ to $3-S_1$.	SI25
Figure SI13. CASPT2 energy plot from $TS4-S_1$ to $6-S_1$.	SI26
Figure SI14. CASPT2 energy plot from $6-S_1$ to $6-S_0$.	SI27
Figure SI15. CASPT2 energy plot from $4-S_0$ to $7-S_1$.	SI28
Figure SI16. CASPT2 energy plot from $7-S_1$ to $7-S_0$.	SI29
Figure SI17. CASPT2 energy plot from $7-S_0$ to $8-S_0$.	SI30
Figure SI18. CASPT2 energy plot and key points structures for 5 -S ₀ to 8 -S ₀ .	SI31
Figure SI19. The key orbitals of 8.	SI32
Cartesian coordinates of optimized structures.	SI33

Structure	State	CASPT2 (Hartree)	CASPT2 (eV)	Active space
1-S ₀	S_0	-583.3284927	0.00	(12,12)
	\mathbf{S}_1	-583.1609861	4.56	
	S_2	-583.1515229	4.82	
	S_3	-583.1216329	5.63	
	S_4	-583.1171281	5.75	
1-S ₁	\mathbf{S}_0	-583.3244261	0.11	(12,12)
	\mathbf{S}_1	-583.1702636	4.31	
	S_2	-583.1547236	4.73	
	S_3	-583.1172515	5.75	
	S_4	-583.1167437	5.76	
$TS1-S_0$	\mathbf{S}_0	-583.2490184	2.16	(12,12)
	\mathbf{S}_1	-583.0683265	7.08	
	S_2	-583.0494569	7.59	
	S_3	-583.0136398	8.57	
	S_4	-582.9978595	9.00	
$TS1-S_1$	\mathbf{S}_0	-583.2367581	2.50	(12,12)
	\mathbf{S}_1	-583.1657039	4.43	
	S_2	-583.1331886	5.31	
	S_3	-583.1017790	6.17	
	S_4	-583.0267012	8.21	
$TS1'-S_1$	\mathbf{S}_0	-583.2523689	2.07	(12,12)
	\mathbf{S}_1	-583.1577166	4.65	
	S_2	-583.1113973	5.91	
	S_3	-583.0908347	6.47	
	S_4	-583.0674628	7.10	
$\mathbf{P'}$ -S ₁	\mathbf{S}_0	-583.2522938	2.07	(12,12)
	\mathbf{S}_1	-583.2011313	3.47	

Table SI1. Absolute and relative CASPT2 energies of the critical points optimized by CASSCF.

	S_2	-583.1585310	4.62	
	S_3	-583.1337414	5.30	
	S_4	-583.0995175	6.23	
<i>anti-anti-</i> S ₁	\mathbf{S}_0	-583.3210576	0.20	(12,12)
	\mathbf{S}_1	-583.1725472	4.24	
	\mathbf{S}_2	-583.1611905	4.55	
	S_3	-583.1370227	5.21	
	S_4	-583.1260224	5.51	
$TSa-S_1$	\mathbf{S}_0	-583.2415470	2.37	(12,12)
	\mathbf{S}_1	-583.1633819	4.49	
	S_2	-583.1360680	5.24	
	S_3	-583.0986061	6.26	
	S_4	-583.0132436	8.58	
$\mathbf{P}_{\mathbf{a}}$ - \mathbf{S}_1	\mathbf{S}_0	-583.24059462	2.39	(12,12)
	\mathbf{S}_1	-583.21423918	3.11	
	S_2	-583.18603848	3.88	
	S_3	-583.14484862	5.00	
	S_4	-583.12806857	5.45	
<i>syn-syn-</i> S ₁	\mathbf{S}_0	-583.3090656	0.53	(12,12)
	\mathbf{S}_1	-583.1723769	4.25	
	S_2	-583.1327159	5.33	
	S_3	-583.1172182	5.75	
	S_4	-583.1073554	6.02	
$TSb-S_1$	\mathbf{S}_0	-583.2355991	2.07	(12,12)
	\mathbf{S}_1	-583.1516591	4.65	
	S_2	-583.0931768	5.91	
	S_3	-582.9975586	6.47	
	S_4	-583.0345305	7.10	
$\mathbf{P}_{\mathbf{b}}$ - \mathbf{S}_1	\mathbf{S}_0	-583.2240756	2.84	(12,12)
	\mathbf{S}_1	-583.2049349	3.36	

	S_2	-583.1548454	4.72	
	S_3	-583.1282237	5.45	
	S_4	-583.0909008	6.46	
$(S_1/S_0)_X$ -a	\mathbf{S}_0	-473.9751628	2.39	(12,12)
	\mathbf{S}_1	-473.9758073	2.41	
	S_2	-473.9258152	3.75	
	S_3	-473.9249885	3.77	
	S_4	-473.9126182	4.12	
$2-S_0$	S_0	-474.0072930	1.58	(12,12)
	S_1	-473.8826885	4.97	
	S_2	-473.8329160	6.32	
	S_3	-473.8304170	6.39	
	S_4	-473.8285090	6.44	
$3-S_0$	\mathbf{S}_0	-474.0994295	-0.97	(12,12)
	\mathbf{S}_1	-473.9309309	3.61	
	S_2	-473.9019674	4.40	
	S_3	-473.8914893	4.68	
	S_4	-473.8800855	4.99	
3- S ₁	\mathbf{S}_0	-474.0871618	-0.64	(12,12)
	\mathbf{S}_1	-473.9415529	3.32	
	S_2	-473.8954531	4.57	
	S_3	-473.8664305	5.36	
	S_4	-473.8412979	6.05	
$TS2-S_0$	\mathbf{S}_0	-474.0049351	1.60	(12,12)
	\mathbf{S}_1	-473.8852777	4.85	
	\mathbf{S}_2	-473.8485671	5.85	
	S_3	-473.8332528	6.27	
	S_4	-473.8262951	6.46	
$4-S_0$	S_0	-474.0288135	0.95	(12,12)
	\mathbf{S}_1	-473.9041035	4.34	

	\mathbf{S}_2	-473.8510057	5.78	
	S_3	-473.8507464	5.79	
	S_4	-473.7929165	7.37	
$TS3-S_0$	\mathbf{S}_0	-474.0030297	1.65	(12,12)
	\mathbf{S}_1	-473.8669756	5.35	
	S_2	-473.8406450	6.07	
	S_3	-473.8246147	6.50	
	S_4	-473.8196416	6.64	
5 -S ₀	\mathbf{S}_0	-364.8600421	-1.67	(10,10)
	\mathbf{S}_1	-364.7694048	0.80	
	S_2	-364.7112030	2.38	
	S_3	-364.6789045	3.26	
	S ₄	-364.6641059	3.66	
TS4- S ₁	\mathbf{S}_0	-474.0322422	0.85	(12,12)
	\mathbf{S}_1	-473.9281722	3.68	
	\mathbf{S}_2	-473.9206221	3.89	
	S_3	-473.8742450	5.15	
	S_4	-473.8618770	5.49	
6- S ₀	\mathbf{S}_0	-364.8083057	-0.26	(10,10)
	\mathbf{S}_1	-364.8020791	-0.09	
	S_2	-364.7486153	1.36	
	S_3	-364.7430845	1.51	
	S_4	-364.7156549	2.26	
6- S ₁	\mathbf{S}_0	-364.8013875	-0.07	(10,10)
	\mathbf{S}_1	-364.7967545	0.05	
	\mathbf{S}_2	-364.7727105	0.71	
	S_3	-364.7596398	1.06	
	S_4	-364.7160772	2.25	
6- T ₁	T_1	-364.8342246	-0.97	(10,10)
	T_2	-364.7590826	1.08	

	T ₃	-364.7638096	0.95	
	T_4	-364.7206300	2.12	
	T 5	-364.7183913	2.19	
$(S_1/S_0)_X$ -b	\mathbf{S}_0	-364.7984577	0.01	(10,10)
	\mathbf{S}_1	-364.7949398	0.10	
	S_2	-364.7716450	0.74	
	S_3	-364.7570698	1.13	
	S_4	-364.7142966	2.30	
$(S_2/S_1)_X$	\mathbf{S}_0	-474.0136942	1.36	(12,12)
	\mathbf{S}_1	-473.8840214	4.89	
	S_2	-473.8683071	5.31	
	S_3	-473.8473518	5.88	
	S_4	-473.8450439	5.95	
TS5 -S ₁	S_0	-473.9891231	2.03	(12,12)
	\mathbf{S}_1	-473.9000195	4.45	
	S_2	-473.8461131	5.92	
	S_3	-473.8431284	6.00	
	S_4	-473.8343970	6.24	
$7-S_0$	\mathbf{S}_0	-364.8229587	-0.66	(10,10)
	\mathbf{S}_1	-364.8110705	-0.34	
	S_2	-364.7447977	1.46	
	S_3	-364.7408371	1.58	
	S_4	-364.7081893	2.46	
$7-S_1$	\mathbf{S}_0	-364.8146969	-0.43	(10,10)
	\mathbf{S}_1	-364.8128576	-0.38	
	S_2	-364.7927786	0.16	
	S_3	-364.7397265	1.61	
	S_4	-364.6925512	2.89	
$(S_1/S_0)_X$ -c	\mathbf{S}_0	-364.8146969	-0.43	(10,10)
	\mathbf{S}_1	-364.8128576	-0.38	

	S_2	-364.7927786	0.16	
	S_3	-364.7397265	1.60	
	S_4	-364.6925512	2.89	
TS6-S ₀	\mathbf{S}_0	-364.8177113	-0.52	(10,10)
	\mathbf{S}_1	-364.7813099	0.47	
	\mathbf{S}_2	-364.7222390	2.08	
	S_3	-364.7000874	2.68	
	\mathbf{S}_4	-364.6858324	3.07	
$TS7-S_0$	\mathbf{S}_0	-364.7978103	0.02	(10,10)
	\mathbf{S}_1	-364.7317690	1.82	
	\mathbf{S}_2	-364.7083788	2.46	
	S_3	-364.6505945	4.03	
	S_4	-364.6480420	4.10	
8 -S ₀	\mathbf{S}_0	-255.5677145	-0.92	(8,8)
	\mathbf{S}_1	-255.4749030	1.60	
	\mathbf{S}_2	-255.4492681	2.30	
	S_3	-255.4038559	3.54	
	S_4	-255.3777881	4.25	
8- S ₁	\mathbf{S}_0	-255.5520819	-0.50	(8,8)
	\mathbf{S}_1	-255.4795905	1.48	
	\mathbf{S}_2	-255.4346554	2.70	
	S_3	-255.3928474	3.84	
	S_4	-255.3818350	4.14	
8- T ₁	T_1	-255.5153701	0.50	(8,8)
	T_2	-255.5142155	0.54	
	T ₃	-255.4381678	2.60	
	T_4	-255.4052995	3.50	
	T 5	-255.3823535	4.12	

State	Electronic configuration (weigh	t) $\Delta E/eV$	λ/nm	f
\mathbf{S}_0	-	0.00	-	-
S_1	$HOMO \rightarrow LUMO(0.51)$	4.41	281	0.0170
-	HOMO-1 \rightarrow LUMO(0.46)			
S_2	HOMO-1 \rightarrow LUMO(0.51)	4.61	269	0.3299
S_3	HOMO-2 \rightarrow LUMO(0.66)	4.98	249	0.1418
S_4	HOMO-3 \rightarrow LUMO(0.67)	4.99	249	0.0003
S_5	HOMO-2 \rightarrow LUMO+1(0.49)	5.14	241	0.0000
S_6	HOMO-4 \rightarrow LUMO(0.36)	5.21	238	0.0006
S_7	HOMO-4 \rightarrow LUMO(0.51)	5.26	236	0.0000
S_8	HOMO-1 \rightarrow LUMO+1(0.49)	5.49	226	0.0001
S ₉	HOMO-2→LUMO+2(0.36)	5.59	222	0.0004
\mathbf{S}_{10}	HOMO→LUMO+3(0.36)	5.67	219	0.0058
•			HOMO-	\rightarrow
8	номоч номо		LUMO	
-		→ → +2	LUMO+	3

Table SI2. Relative TD-B3LYP vertical excitation energy (ΔE) and wavelength (λ) at 1-S₀ together with the electronic configuration (weight in the parenthesis, orbital below the Table) and oscillation strength (*f*).

State	Electronic configuration (weigh	nt) $\Delta E/eV$	λ/nm	f
S ₀	-	0.00	-	-
S_1	HOMO-1 \rightarrow LUMO(0.44)	4.95	251	0.0355
	$HOMO \rightarrow LUMO(0.49)$			
S_2	HOMO-1 \rightarrow LUMO(0.45)	5.12	242	0.3576
S_3	HOMO-2 \rightarrow LUMO+1(0.48)	5.23	237	0.0000
S_4	HOMO-2 \rightarrow LUMO(0.60)	5.31	234	0.1265
S_5	HOMO-3→LUMO (0.43)	5.36	231	0.0000
S_6	HOMO-3 \rightarrow LUMO(0.33)	5.46	227	0.0013
S_7	HOMO-4 \rightarrow LUMO(0.57)	5.66	219	0.0001
S_8	HOMO-3 \rightarrow LUMO+1(0.29)	6.07	204	0.0059
S ₉	HOMO \rightarrow LUMO+3(0.48)	6.32	196	0.0706
\mathbf{S}_{10}	HOMO-1 \rightarrow LUMO+3(0.50)	6.56	189	0.3312
-				\succ
	НОМО-4 НОМО-	3	НОМО-2	!
	номо-1 номо		LUMO	
-				
	LUMO+1 LUMO+	-2	LUMO+	3

Table SI3. Relative TD-CAM-B3LYP vertical excitation energy (ΔE) and wavelength (λ) at **1**-S₀ together with the electronic configuration (weight in the parenthesis, orbital below the Table) and oscillation strength (*f*).

State Configuration (weight) $\Delta E/eV$ λ/nm f S_0 222222000000(0.82) 0.00 -_ 222u2200d000(0.31) 270 \mathbf{S}_1 4.58 0.0104 2u2222000d00(0.24) S_2 22u22200000d(0.73) 5.37 231 0.0005 S_3 222u220d0000(0.78) 219 0.0050 5.66 5.97 0.0011 S_4 222u2200000d(0.71) 208 2 3 1 6 4 5 9 10 11 12

Table SI4. Relative CASPT2 vertical excitation energy (ΔE), wavelengths (λ), oscillation strength (*f*), and the main configuration with weight in parenthesis at **3**-S₀, where the related orbitals are shown.

"u" and "d" stand for singly occupied orbitals with electrons of spin up (u) or spin down (d)

Table SI5. Relative CASPT2 vertical excitation energy (ΔE), wavelengths (λ), oscillation strength (f), and the main configuration with weight in parenthesis at 4-S₀, where the related orbitals are shown.

State	Configuration (weight)	$\Delta E/eV$	λ/nm	f
S_0	222222000000(0.81)	0.00	-	-
\mathbf{S}_1	22222u0d0000(0.74)	3.39	365	0.0005
S_2	22222ud00000(0.72)	4.84	256	0.7884
S_3	2222u2d00000(0.38)	4.85	256	0.0096
S_4	u22222d00000(0.78)	6.42	193	0.0003
3-		\Rightarrow	3	*>>
₽)		\leftarrow
	4 5		6	
** • •		$\not\succ$	9	
-		\succ	****	Ş
1	10 11		12	

"u" and "d" stand for singly occupied orbitals with electrons of spin up (u) or spin down (d)

1	B3LYP			CAM-B3LYP			CASSCF		
1	S_0	\mathbf{S}_1	$\Delta(S_1-S_0)$	\mathbf{S}_0	\mathbf{S}_1	$\Delta(S_1-S_0)$	\mathbf{S}_0	\mathbf{S}_1	$\Delta(S_1-S_0)$
C1-C2	1.39	1.45	0.06	1.39	1.42	0.03	1.39	1.44	0.05
C2-C3	1.41	1.40	-0.01	1.40	1.42	0.02	1.39	1.44	0.05
C3-C4	1.41	1.41	0.00	1.40	1.43	0.03	1.41	1.48	0.07
C4-C5	1.39	1.44	0.05	1.39	1.42	0.03	1.39	1.47	0.08
C5-C6	1.40	1.39	-0.01	1.39	1.40	0.01	1.39	1.47	0.08
C1-C6	1.40	1.39	-0.01	1.39	1.40	0.01	1.39	1.41	0.02
C3-B12	1.55	1.59	0.04	1.55	1.52	-0.03	1.58	1.55	-0.03
B12-N13	1.45	1.45	0.00	1.44	1.46	0.02	1.44	1.44	0.00
B12-N14	1.45	1.43	-0.02	1.44	1.45	0.01	1.45	1.45	0.00
N13-N15	1.24	1.23	-0.01	1.23	1.22	-0.01	1.25	1.25	0.00
N15-N17	1.14	1.14	0.00	1.12	1.13	0.01	1.11	1.11	0.00
N14-N16	1.23	1.22	-0.01	1.22	1.22	0.00	1.24	1.24	0.00
N16-N18	1.14	1.15	0.01	1.12	1.13	0.01	1.12	1.12	0.00
C1-C2-C3	121	123	2	121	123	2	122	124	2
C2-C3-C4	117	114	-3	118	112	-6	117	116	-1
C3-C4-C5	121	123	2	121	123	2	121	120	-1
C4-C5-C6	120	121	1	120	122	2	120	119	-1
C5-C6-C1	120	117	-3	120	116	-4	119	118	-1
C6-C1-C2	120	122	2	120	122	2	120	123	3
C2-C3-B12	124	125	1	124	126	2	124	125	1
C4-C3-B12	119	121	2	119	121	2	118	119	1
N13-B12-N14	115	120	5	115	117	2	115	116	1
N13-B12-C3	117	114	-3	117	117	0	116	117	1
N14-B12-C3	128	126	-2	128	126	-2	129	128	-1
B12-N13-N15	122	125	3	121	122	1	117	117	0
N13-N15-N17	173	175	2	174	175	1	174	174	0
B12-N14-N16	128	131	3	128	127	-1	125	123	-2
N14-N16-N18	172	174	2	173	174	1	172	173	1
C2-C3-B12-N14	3	0	-3	0	10	10	1	21	20

Table SI6. Key bond length (in angstrom (Å)), angle and dihedral angle (in degree (°)) of $1-S_0$ and $1-S_1$ optimized by TD-B3LYP, TD-CAM-B3LYP and CASSCF methods.

Figure SI1. The (10,10) active orbitals of 7 in the CASPT2 calculations.

Figure SI2. The (8,8) active orbitals of **8** in the CASPT2 calculations.

Figure SI3. DFT-optimized ground-state structure of 1. Angles are given in $^{\circ}$.

Figure SI4. CASPT2//CASSCF energy profiles with key structures (distance in Å) for the first dinitrogen extrusion from (a) *syn-anti* conformer, (b) *anti-anti* conformer, and (c) *syn-syn* conformer of PhBN₆ in S₁ state.

Figure SI5. Energy plot from $1-S_0$ to $1-S_1$. Bond lengths are given in Å.

Figure SI6. Energy plot from TS1-S₁ to $(S_1/S_0)_x$ -a. Bond lengths are given in Å.

Figure SI7. Energy plot from $(S_1/S_0)_x$ -a to **2**-S₀. Bond lengths are given in Å.

Figure SI8. Energy plot along the shorten C-N distance from $(S_1/S_0)_x$ -a. Bond lengths are given in Å and angles are in °.

Figure SI9. CASPT2//CASSCF energy profiles for the dinitrogen extrusion reaction of $2-S_0$ to the diazirine derivative $5-S_0$. Distances are given in Å.

Figure SI10. Energy plot from $2-S_0$ to $4-S_0$ via TS2-S₀. Bond lengths are given in Å and angles are in °.

Figure SI11. Energy plot from $2-S_0$ to $5-S_0$ via TS3-S₀. Bond lengths are given in Å.

Figure SI12. Energy plot from $3-S_0$ to $3-S_1$. Bond lengths are given in Å.

Figure SI13. Energy plot from TS4-S₁ to 6-S₁. Bond lengths are given in Å and angles are in °.

Figure SI14. Energy plot from to $6-S_1$ and $6-S_0$ via $(S_1/S_0)_X$ -b. Bond lengths are given in Å and angles are in °.

Figure SI15. Energy plot from 4-S₀ to 7-S₁ via $(S_2/S_1)_X$ and TS5-S₁. Bond lengths are given in Å.

Figure SI16. Energy plot from 7-S₁ to 7-S₀. Bond lengths are given in Å and angles are in $^{\circ}$.

Figure SI17. Energy plot from 7-S₀ to 8-S₀ via TS6-S₀. Bond lengths are given in Å and angles are in $^{\circ}$.

Figure SI18. CASPT2//CASSCF energy profiles for the dinitrogen extrusion reaction of $5-S_0$ to $8-S_0$. Distances are given in Å.

Figure SI19. The key molecular orbitals of **8**. For S_0 state, the left orbital is the HOMO orbital and the right is the LUMO orbital. For T_1 and S_1 states, these two orbitals are singly occupied.

	1-5	(CASSCF)			1-5	(CASSCF)	
C	2 02/260	0.8216/2	0.007005	C	2 052876	0.8/2020	-0.265151
C C	2.934300	0.021043	0.007993	C C	2.933870	0.043230	-0.203131
C	0.73/11/4	-0.210/41	0.007737	C C	0.672606	-0.210983	-0.3022+7
C	1 360154	-0.210400	-0.000423	C C	1 353105	-0.210985	0 185875
C	2 754676	1 576/1/	0.00007	C C	2 784404	1 550070	0.103075
C C	2.754070	-1.370+14	0.000049	C C	2.704494	-1.339079	0.232+00
с u	2 522681	-0.427090	0.000737	С Ц	2 5/2225	1 720420	0.012018
п п	1 126005	1.715275	0.013981	п П	1.002620	1.720430	-0.433238
п u	0.769666	2 255040	0.014119	п	0.767712	1.009039	-0.334908
п	0./08000	-2.555940	-0.011985	П	0.707713	-2.332318	0.340189
п	5.215820	-2.348081	-0.012038	П	3.243080	-2.308130	0.429994
п	4.01/320	-0.300238	0.001001	П	4.002013	-0.409423	0.043497
D N	-0.841985	-0.10/043	0.000891	D	-0.882/09	-0.1/2403	-0.088393
N N	-1.513900	-1.441555	0.006254	IN N	-1.305/30	-1.422375	-0.288980
N	-1./15554	0.9869/6	-0.004227	N	-1./32514	0.999/64	0.069219
N	-2./652/6	-1.423569	0.008141	N	-2.818223	-1.3942/9	-0.2/3/31
N	-1.329695	2.163172	-0.011430	N	-1.283834	2.082/37	0.451999
Ν	-3.874551	-1.525606	0.010288	Ν	-3.928087	-1.488004	-0.279106
Ν	-1.135080	3.263550	-0.017931	N	-1.007130	3.095947	0.800337
	TS1-	S ₀ (CASSCF)			TS1-	$S_1(CASSCF)$	
С	2.837780	0.775949	-0.544686	С	2.855995	0.814590	-0.418873
С	1.460146	0.836876	-0.579222	С	1.495603	0.877387	-0.465747
С	0.669911	-0.215741	-0.101069	С	0.634939	-0.213077	-0.091941
С	1.323884	-1.346051	0.407006	С	1.309781	-1.470104	0.308690
С	2.715202	-1.406473	0.462154	С	2.776367	-1.527093	0.383635
С	3.475777	-0.343400	-0.014986	С	3.551266	-0.337040	0.011222
Н	3.420781	1.593883	-0.929732	Н	3.426389	1.674130	-0.726134
Н	0.990899	1.707182	-1.004792	Н	1.047874	1.782937	-0.833141
Н	0.744060	-2.181074	0.756627	Н	0.728647	-2.340075	0.530589
Н	3.199419	-2.277939	0.865652	Н	3.267068	-2.428364	0.690717
Н	4.549751	-0.387494	0.017797	Н	4.621276	-0.354251	0.050369
В	-0.901408	-0.189032	-0.156966	В	-0.914722	-0.169338	-0.158779
Ν	-1.569297	-1.396573	-0.617573	Ν	-1.593520	-1.418882	-0.489667
Ν	-1.816026	0.849758	0.168431	Ν	-1.842728	0.898704	0.026370
Ν	-2.814322	-1.481129	-0.580792	Ν	-2.835296	-1.499328	-0.422223
Ν	-0.836426	2.183339	0.949976	Ν	-0.919527	2.295569	0.748906
Ν	-3.910168	-1.693105	-0.601458	Ν	-3.932083	-1.709272	-0.400746

Cartesian coordinates of optimized structure by CASSCF and DFT

	TS1′	-S1(CASSCF))		P'-5	S ₁ (CASSCF)	
С	0.000037	-0.562649	-0.030152	С	0.023422	-0.607265	-0.083733
С	0.039895	-0.605029	1.404615	С	0.080320	-0.670870	1.352157
С	1.170924	-0.082843	2.143566	С	1.177138	-0.077994	2.087594
С	2.267485	0.465988	1.372666	С	2.237013	0.531679	1.310864
С	2.222822	0.513679	-0.060155	С	2.194332	0.551416	-0.119545
С	1.088719	0.001549	-0.767204	С	1.084002	-0.006141	-0.824227
Η	-0.852062	-0.959909	-0.547381	Н	-0.821846	-1.030486	-0.595460
Н	-0.780428	-1.057710	1.929486	Н	-0.723108	-1.165174	1.886505
Η	3.128616	0.849771	1.883557	Н	3.080039	0.959383	1.823074
Η	3.048177	0.934731	-0.601090	Н	3.003484	0.999665	-0.660389
Н	1.056431	0.035882	-1.838085	Н	1.048902	0.023573	-1.893881
В	1.213012	-0.144482	3.714562	В	1.147471	-0.119591	3.677698
Ν	2.443789	-0.662436	4.165599	Ν	2.291048	-0.827636	3.787631
Ν	0.135655	0.241972	4.610894	Ν	0.156512	0.339470	4.615901
Ν	2.336629	-0.551389	5.948344	Ν	2.451677	-0.672549	6.418787
Ν	-0.846659	0.821393	4.129189	Ν	-0.827203	0.933699	4.153104
Ν	2.501728	-0.596149	7.034762	Ν	2.551024	-0.642416	7.515104
Ν	-1.768663	1.343973	3.813341	Ν	-1.748121	1.467578	3.855331
	anti-an	ti-S1(CASSC	F)		TSa-	S ₁ (CASSCF)	
С	3.115967	1.213121	-0.000841	С	-0.008161	0.026675	0.045899
С	1.751538	1.193654	0.001979	С	0.021656	0.007474	1.407526
С	0.971180	-0.017115	0.003186	С	1.238172	-0.021613	2.175080
С	1.733352	-1.280806	0.002709	С	2.502507	-0.039499	1.405537
С	3.202940	-1.254334	-0.000443	С	2.465953	-0.015038	-0.064670
С	3.893404	0.038875	-0.002472	С	1.164934	0.020387	-0.742715
Η	3.620607	2.164124	-0.002042	Н	-0.961934	0.048109	-0.452480
Η	1.222550	2.128515	0.002884	Н	-0.908085	0.013463	1.944937
Η	1.217837	-2.218046	0.004263	Н	3.446607	-0.082412	1.907675
Н	3.757389	-2.171926	-0.001446	Н	3.378274	-0.028146	-0.626526
Η	4.963393	0.080389	-0.005174	Н	1.114067	0.040353	-1.812219
В	-0.566213	0.002538	0.002922	В	1.197951	-0.013528	3.731258
Ν	-1.229012	-1.289627	0.002301	Ν	2.509892	0.153240	4.268344
Ν	-1.204520	1.306569	0.003005	Ν	-0.102954	-0.154799	4.357082
Ν	-2.458826	-1.428896	-0.001859	Ν	2.463441	0.032578	6.027330
Ν	-2.430727	1.470115	-0.000338	Ν	-0.295670	-0.033076	5.569023
Ν	-3.544521	-1.701153	-0.005621	Ν	2.854519	-0.006028	7.055591

	Pa-S	S ₁ (CASSCF)			<i>syn-syn-</i> S ₁ (CASSCF)				
С	-0.010090	0.027117	0.040466	С	-2.468210	-0.842459	-0.849781		
С	0.018959	0.007903	1.401677	С	-1.048825	-0.861462	-0.880241		
С	1.235733	-0.023014	2.166606	С	-0.235335	0.011468	0.002869		
С	2.501512	-0.040855	1.399901	С	-1.021991	0.889956	0.897705		
С	2.465291	-0.015198	-0.069799	С	-2.494116	0.854608	0.871691		
С	1.164006	0.020558	-0.747074	С	-3.165994	-0.026348	-0.015891		
Н	-0.963319	0.048804	-0.458843	Н	-2.997782	-1.498022	-1.517752		
Н	-0.910147	0.014149	1.940121	Н	-0.555382	-1.494871	-1.591389		
Н	3.445579	-0.085524	1.901892	Н	-0.529463	1.502705	1.626123		
Н	3.377407	-0.028223	-0.631863	Н	-3.045754	1.497033	1.529506		
Н	1.113318	0.040660	-1.816570	Н	-4.240089	-0.040133	-0.023702		
В	1.192543	-0.013622	3.721798	В	1.325093	0.002096	-0.004798		
Ν	2.509975	0.158813	4.228116	Ν	2.138844	1.187498	0.120566		
Ν	-0.102189	-0.155319	4.355638	Ν	2.125966	-1.190847	-0.136204		
Ν	2.462663	0.030786	6.074566	Ν	1.609933	2.307957	0.012718		
Ν	-0.292587	-0.032934	5.568265	Ν	1.587483	-2.306867	-0.027316		
Ν	2.863796	-0.008004	7.097886	Ν	1.265744	3.367494	-0.069295		
Ν	-0.606525	0.057769	6.639047	Ν	1.235232	-3.363662	0.055100		
	TSb-	S1(CASSCF)			P _b -S	S ₁ (CASSCF)			
С	2.473342	-0.895270	0.792078	С	2.462870	-0.886955	0.806025		
С	1.054276	-0.940662	0.813348	С	1.045677	-0.964955	0.820866		
С	0.234954	-0.000994	0.006003	С	0.208305	-0.072457	-0.018760		
С	1.006004	0.951030	-0.823330	С	0.956905	0.905850	-0.833462		
С	2.479025	0.933922	-0.792703	С	2.429718	0.926406	-0.793620		
С	3.159180	-0.002245	0.029288	С	3.131925	0.011373	0.035149		
Н	3.012922	-1.594556	1.405477	Н	3.014284	-1.565963	1.431730		
Н	0.561483	-1.647670	1.451936	Н	0.565947	-1.673426	1.467751		
Н	0.500676	1.610317	-1.500069	Н	0.435213	1.568098	-1.494309		
Н	3.025441	1.629700	-1.398456	Н	2.960249	1.635623	-1.398902		
Н	4.233509	0.000423	0.041713	Н	4.205766	0.038981	0.049899		
В	-1.321894	-0.063975	0.022444	В	-1.334645	-0.234900	-0.037555		
Ν	-2.270735	1.000804	0.065474	Ν	-2.279370	0.798945	-0.138828		
Ν	-2.081040	-1.307958	-0.017235	Ν	-2.062641	-1.498297	0.037451		
Ν	-1.321864	2.465621	0.462677	Ν	-1.085321	2.962813	0.540746		
Ν	-1.535979	-2.324139	-0.473520	Ν	-1.529673	-2.486852	-0.496630		
Ν	-1.058465	3.487564	0.774350	Ν	-0.978749	3.970599	0.971968		
				3.7	1 1 47005	0 400 571			

	(S_1/S_0)) _X -a(CASSCF	[•])		2 -S	0(CASSCF)	
С	3.386586	-0.359922	-0.008939	С	3.331999	-0.306131	-0.261787
С	2.503712	-1.438184	-0.023514	С	2.697552	-1.374390	0.371776
С	1.124583	-1.222623	-0.015046	С	1.355646	-1.302679	0.674407
С	0.619753	0.074718	0.020794	С	0.602097	-0.164185	0.355396
С	1.543628	1.141986	0.034294	С	1.247788	0.903423	-0.280162
С	2.892570	0.947506	0.015246	С	2.605930	0.835143	-0.587136
В	-0.917855	0.423774	0.006803	В	-0.905105	-0.095516	0.697813
Ν	-1.841346	-0.675890	0.204804	Ν	-2.026524	0.966061	0.411028
Ν	-3.058833	-0.365642	0.036808	Ν	-2.684223	0.740636	-0.702870
Ν	-4.156393	-0.208936	-0.077416	Ν	-3.322803	0.654558	-1.602826
Ν	-1.445246	1.822128	-0.172055	Ν	-2.041891	-0.527794	1.230464
Н	2.888336	-2.442097	-0.044833	Н	3.258559	-2.256298	0.625163
Н	0.452857	-2.061246	-0.029974	Н	0.878673	-2.133336	1.164314
Н	1.156609	2.147245	0.047885	Н	0.694032	1.792455	-0.526470
Н	3.565432	1.785917	0.024058	Н	3.090426	1.663423	-1.072629
Н	4.447501	-0.538123	-0.018919	Н	4.379740	-0.364760	-0.496480
3- S ₀ (CASSCF)					3 -S	1(CASSCF)	
С	3.620123	-0.330869	0.161280	С	3.640506	-0.318675	0.151042
С	2.788031	-1.234820	0.817419	С	2.835273	-1.262517	0.840303
С	1.408689	-1.151664	0.669117	С	1.369918	-1.201542	0.705294
С	0.850834	-0.156731	-0.141294	С	0.795774	-0.156134	-0.147662
С	1.691624	0.744857	-0.794785	С	1.701865	0.781878	-0.827786
С	3.070778	0.649790	-0.638045	С	3.104961	0.651389	-0.640985
В	-1.748566	0.016891	-0.422927	В	-1.776553	0.037445	-0.421841
Ν	-3.143602	0.065380	-0.641589	Ν	-3.171255	0.069657	-0.636772
Ν	-3.864125	0.684063	0.159463	Ν	-3.899290	0.686501	0.160878
Ν	-4.619881	1.201087	0.797738	Ν	-4.662237	1.197958	0.794542
Ν	-0.517780	-0.068553	-0.291127	Ν	-0.535922	-0.053106	-0.301311
Н	3.210529	-2.001833	1.441368	Н	3.281332	-2.017176	1.455464
Н	0.758562	-1.845289	1.169806	Н	0.727112	-1.896954	1.203182
Н	1.260820	1.507179	-1.417273	Н	1.285990	1.545122	-1.453630
Н	3.708935	1.349966	-1.147256	Н	3.755528	1.344455	-1.143187
Н	4.686922	-0.398840	0.278107	Н	4.708892	-0.377688	0.262471

	TS2-	S ₀ (CASSCF)			4-S	0(CASSCF)	
С	3.404417	-0.419582	-0.235307	С	3.531441	-0.401406	-0.027349
С	2.532530	-1.453128	0.104753	С	2.719706	-1.503021	0.225387
С	1.214193	-1.176389	0.395982	С	1.335026	-1.384193	0.124201
С	0.730629	0.138066	0.357526	С	0.746632	-0.163062	-0.230588
С	1.614377	1.173221	0.016667	С	1.584696	0.932614	-0.480150
С	2.945711	0.894516	-0.279799	С	2.954160	0.816338	-0.380537
В	-0.732427	0.446735	0.683671	В	-0.784024	-0.031825	-0.342648
Ν	-2.285244	0.805082	-0.469340	Ν	-3.358779	-0.014124	-0.472453
Ν	-3.144206	-0.107500	-0.615089	Ν	-3.882538	1.089051	-0.808721
Ν	-3.937217	-0.868148	-0.815587	Ν	-4.484612	1.986591	-1.091136
Ν	-1.929584	0.803459	1.081305	Ν	-2.010610	0.107805	-0.442601
Н	2.889228	-2.466711	0.139296	Н	3.158290	-2.446013	0.498552
Н	0.549926	-1.980296	0.658606	Н	0.714570	-2.240203	0.320942
Н	1.260615	2.187501	-0.017869	Н	1.154626	1.879847	-0.753914
Н	3.616820	1.692206	-0.541913	Н	3.579368	1.669256	-0.576305
Η	4.432129	-0.638422	-0.462901	Н	4.600358	-0.488774	0.049526
TS3-S ₀ (CASSCF)					TS4-	S ₀ (CASSCF)	
С	3.326289	-0.312869	-0.276940	С	3.622732	-0.282846	0.202347
С	2.687424	-1.380096	0.354053	С	2.801642	-1.234809	0.858480
С	1.349516	-1.295617	0.673927	С	1.343572	-1.202110	0.667749
С	0.605481	-0.146495	0.375960	С	0.765992	-0.174445	-0.204138
С	1.255912	0.919984	-0.257355	С	1.696369	0.774763	-0.845807
С	2.608990	0.839708	-0.582298	С	3.095588	0.673982	-0.609595
В	-0.897834	-0.063023	0.736322	В	-1.786831	-0.118239	-0.617086
Ν	-2.042601	0.943265	0.465354	Ν	-3.175153	-0.175176	-0.843460
Ν	-2.673962	0.692819	-0.767143	Ν	-3.825294	0.813205	0.370771
Ν	-3.305018	0.611163	-1.668076	Ν	-4.503614	1.374956	1.031128
Ν	-2.038366	-0.485833	1.272141	Ν	-0.534256	-0.104295	-0.416425
Н	3.241185	-2.270980	0.591578	Н	3.233497	-1.983446	1.493045
Н	0.868451	-2.125579	1.160975	Н	0.701170	-1.914474	1.143415
Η	0.709130	1.817725	-0.487880	Н	1.293082	1.529582	-1.491414
Н	3.096926	1.667387	-1.065477	Н	3.747105	1.379545	-1.093242
Н	4.370372	-0.380949	-0.525139	Н	4.686291	-0.32558	0.354233

	5-S	0(CASSCF)			6 -S	0(CASSCF)	
С	-1.882643	-1.211933	-0.000018	С	-2.183965	-0.901305	0.000303
С	-0.488641	-1.210599	0.000006	С	-0.856721	-1.306837	0.000036
С	0.228866	-0.000850	0.000027	С	0.189746	-0.348435	-0.000279
С	-0.488536	1.208713	0.000036	С	-0.149248	1.034105	-0.000378
С	-1.882122	1.207702	0.000026	С	-1.477453	1.425880	-0.000044
С	-2.579460	-0.001703	-0.000007	С	-2.499875	0.463056	0.000493
Н	-2.419662	-2.143162	-0.000051	Н	-2.969361	-1.634524	0.000499
Н	0.044447	-2.144527	-0.000007	Н	-0.588116	-2.346177	-0.000187
Н	0.043899	2.142982	0.000043	Н	0.638248	1.765388	-0.000798
Н	-2.430849	2.158035	0.000032	Н	-1.726563	2.471107	-0.000167
Н	-3.654646	-0.001594	-0.000028	Н	-3.527903	0.775718	0.000758
В	1.764982	-0.000975	0.000009	Ν	1.455755	-0.804351	-0.000216
Ν	3.007098	0.658258	-0.000115	В	2.625179	-0.101400	0.000329
Ν	3.007036	-0.660321	0.000048	Ν	3.832140	0.406404	0.000570
	6 -S	1(CASSCF)			6- T	(CASSCF)	
С	-2.084332	-0.911878	0.000916	С	-2.081211	-0.910268	0.000273
С	-0.712119	-1.138521	0.001830	С	-0.713748	-1.139248	0.000254
С	0.177547	-0.047712	-0.000343	С	0.185795	-0.048481	0.000093
С	-0.325944	1.266787	0.001471	С	-0.327460	1.268812	-0.000100
С	-1.700131	1.481098	0.000429	С	-1.697953	1.478935	-0.000081
С	-2.581811	0.395322	-0.000519	С	-2.580835	0.395214	0.000115
Н	-2.761828	-1.745831	-0.000039	Н	-2.764340	-1.751797	0.000407
Н	-0.313101	-2.135596	0.000912	Н	-0.312304	-2.145104	0.000371
Н	0.365146	2.088839	0.001048	Н	0.368325	2.098749	-0.000260
Н	-2.082519	2.485220	-0.000220	Н	-2.083733	2.491858	-0.000219
Н	-3.642872	0.565677	-0.001965	Н	-3.650717	0.566942	0.000122
Ν	1.515544	-0.262574	-0.000708	Ν	1.516001	-0.261971	0.000034
В	2.793621	-0.466005	-0.000865	В	2.779310	-0.464716	-0.000023
Ν	4.114663	-0.676196	-0.001028	Ν	4.124734	-0.680297	-0.000071

	(S_2/S)	1)X(CASSCF)			TS5-	S ₁ (CASSCF)	
С	3.593956	-0.556038	0.009235	С	3.598888	-0.490857	-0.144090
С	2.599067	-1.558143	0.168689	С	2.690775	-1.624055	0.068218
С	1.277287	-1.295395	0.021803	С	1.241339	-1.379399	0.084822
С	0.749527	0.013345	-0.314748	С	0.727338	-0.005131	-0.111751
С	1.743924	1.093989	-0.493170	С	1.708346	1.031429	-0.309907
С	3.169735	0.808941	-0.328757	С	3.050232	0.796369	-0.323780
В	-0.738440	0.251169	-0.438841	В	-0.759954	0.292152	-0.105642
Ν	-3.115835	0.785428	0.049897	Ν	-3.236969	0.826245	0.211571
Ν	-4.096374	0.766879	-0.764505	Ν	-4.036106	0.792762	-1.102990
Ν	-5.067292	0.808540	-1.305305	Ν	-4.812785	0.834981	-1.884951
Ν	-1.971615	0.442706	-0.575322	Ν	-1.984075	0.526354	-0.134576
Н	2.908194	-2.562224	0.423134	Н	3.072262	-2.614746	0.211346
Η	0.565315	-2.098931	0.164898	Н	0.562891	-2.192006	0.243139
Н	1.411116	2.096579	-0.713880	Н	1.357312	2.037439	-0.452095
	7-S	0(CASSCF)			7-S	1(CASSCF)	
С	-2.271253	-0.907784	0.000124	С	-2.030716	-1.210198	0.000010
С	-0.937825	-1.312521	0.000005	С	-0.637100	-1.208239	-0.000496
С	0.109411	-0.369099	0.000064	С	0.084107	0.002178	-0.000706
С	-0.231338	1.000501	-0.000014	С	-0.641252	1.210081	-0.000488
С	-1.563486	1.407526	0.000043	С	-2.034869	1.207248	0.000013
С	-2.583867	0.453086	0.000150	С	-2.731913	-0.002674	0.000310
Н	-3.057216	-1.641233	0.000180	Н	-2.564126	-2.143654	0.000327
Н	-0.698781	-2.360425	-0.000002	Н	-0.105763	-2.142893	-0.000479
Н	0.548408	1.740183	-0.000150	Н	-0.113116	2.146546	-0.000476
Н	-1.806072	2.454905	-0.000013	Н	-2.571491	2.138862	0.000340
Η	-3.612138	0.767639	0.000190	Н	-3.807232	-0.004521	0.000858
В	1.565114	-0.867287	-0.000040	В	1.610866	0.004676	-0.000240
Ν	2.720894	-0.031654	-0.000106	Ν	2.919526	0.000564	0.000260
Ν	3.840434	0.267399	-0.000145	Ν	4.100572	-0.001596	0.000879

	$(\mathbf{S}_1 \mathbf{S}_0)$) _X -b(CASSCF)		(S_1/S_0)) _X -c(CASSCF	")
С	-2.086306	-0.909302	0.000646	С	-2.206623	-0.920332	-0.004200
С	-0.711817	-1.133903	0.000117	С	-0.840859	-1.192887	-0.004344
С	0.166034	-0.045685	-0.001115	С	0.106821	-0.147646	-0.000620
С	-0.327555	1.262463	-0.000490	С	-0.369333	1.181633	0.003752
С	-1.703356	1.478878	0.000012	С	-1.735393	1.451603	0.005255
С	-2.583774	0.395258	-0.000037	С	-2.657536	0.401803	0.000955
Η	-2.763863	-1.742910	0.001058	Н	-2.913195	-1.730612	-0.007597
Η	-0.307576	-2.128892	0.000536	Н	-0.504535	-2.213645	-0.005835
Η	0.367507	2.081182	-0.000439	Н	0.331134	1.996897	0.004722
Η	-2.086303	2.482541	0.000078	Н	-2.078754	2.470393	0.009001
Η	-3.644856	0.565404	0.000175	Н	-3.711909	0.611300	0.001393
Ν	1.525732	-0.263812	-0.000696	В	1.599166	-0.442230	-0.001735
В	2.792186	-0.464911	-0.000075	Ν	2.912856	-0.411687	-0.000705
Ν	4.125811	-0.677682	0.001149	Ν	4.090445	-0.453355	0.000244
TS6-S ₀ (CASSCF)					TS7-	S ₀ (CASSCF)	
С	-2.285255	-0.900715	0.000340	С	-1.911987	-1.197721	-0.024079
С	-0.959914	-1.334258	0.000894	С	-0.541723	-1.350361	-0.047492
С	0.112729	-0.419207	0.001248	С	0.329255	-0.244991	-0.019657
С	-0.200998	0.957290	0.001127	С	-0.250466	1.037780	0.033108
С	-1.523154	1.395070	-0.000060	С	-1.631922	1.194975	0.056404
С	-2.567093	0.465772	-0.000424	С	-2.465359	0.077856	0.028086
Н	-3.087215	-1.616894	0.000277	Н	-2.550774	-2.062327	-0.046050
Η	-0.745791	-2.388052	0.000837	Н	-0.126032	-2.341618	-0.087875
Н	0.589165	1.685961	0.001777	Н	0.374633	1.907611	0.055733
Η	-1.740826	2.448162	-0.000660	Н	-2.056856	2.181864	0.096657
Н	-3.587584	0.805048	-0.001292	Н	-3.533346	0.201805	0.046631
В	1.537099	-1.052756	-0.003364	В	1.823593	-0.686111	-0.052909
Ν	2.701127	0.122495	0.000832	Ν	2.709884	1.202940	0.000323
Ν	3.779994	0.433321	-0.001245	Ν	3.307009	0.210284	-0.038867
С	-2.285255	-0.900715	0.000340	С	-1.911987	-1.197721	-0.024079
С	-0.959914	-1.334258	0.000894	С	-0.541723	-1.350361	-0.047492

	8 -S	0(CASSCF)			8 -S	1(CASSCF)	
С	-0.966522	-1.211577	-0.000010	С	0.952143	-1.231804	-0.000009
С	0.424185	-1.215905	-0.000035	С	-0.413593	-1.256369	-0.000191
С	1.152455	-0.008380	0.000055	С	-1.190174	-0.003395	-0.000010
С	0.424024	1.217717	-0.000017	С	-0.417552	1.259438	-0.000188
С	-0.972616	1.212832	-0.000008	С	0.949742	1.229646	0.000023
С	-1.663427	0.002557	0.000027	С	1.669213	-0.000371	0.000194
Η	-1.508806	-2.140132	-0.000016	Н	1.497056	-2.158223	-0.000037
Η	0.950736	-2.154960	-0.000049	Н	-0.934632	-2.193148	-0.000412
Η	0.955581	2.153890	-0.000039	Н	-0.935718	2.197723	-0.000474
Η	-1.514600	2.141526	-0.000020	Н	1.496342	2.155225	-0.000004
Η	-2.738839	0.000324	0.000024	Н	2.740349	0.000292	0.000330
В	2.711577	0.002202	0.000080	В	-2.639510	0.001035	0.000772
	8- T	1(CASSCF)					
С	0.964488	-1.207284	0.000015				
С	-0.424307	-1.217878	0.000053				
С	-1.162975	-0.007015	0.000094				
С	-0.421047	1.223965	0.000049				
С	0.971621	1.209950	0.000005				
С	1.671626	0.002099	0.000005				
Н	1.499841	-2.140147	-0.000029				
Н	-0.941020	-2.161983	0.000013				
Η	-0.943032	2.164833	0.000015				
Η	1.509057	2.141674	-0.000037				
Н	2.746737	-0.000672	-0.000027				
В	-2.697323	-0.007494	-0.000162				

	1-5	S ₀ (B3LYP)			1-S ₀ (CAM-B3LYP)				
С	2.936384	0.823247	0.001480	С	2.925686	0.830236	0.002460		
С	1.548094	0.927225	0.001559	С	1.542394	0.931070	0.002650		
С	0.728805	-0.217570	0.000199	С	0.730244	-0.210133	0.000379		
С	1.366339	-1.474754	-0.001220	С	1.365648	-1.459852	-0.002036		
С	2.752715	-1.582887	-0.001357	С	2.746923	-1.565920	-0.002340		
С	3.541846	-0.432463	-0.000003	С	3.530315	-0.419051	-0.000085		
Η	3.544999	1.720407	0.002576	Н	3.532219	1.727862	0.004306		
Η	1.114978	1.918865	0.002782	Н	1.107691	1.921954	0.004767		
Η	0.759825	-2.372868	-0.002246	Н	0.757872	-2.356337	-0.003709		
Η	3.219513	-2.561502	-0.002499	Н	3.214869	-2.543117	-0.004291		
Η	4.623190	-0.514151	-0.000085	Н	4.611094	-0.498729	-0.000277		
В	-0.823978	-0.158810	0.000232	В	-0.822166	-0.164339	0.000510		
Ν	-1.544432	-1.417412	0.000326	Ν	-1.525085	-1.425212	0.000855		
Ν	-1.662737	1.024389	0.000214	Ν	-1.671516	1.004005	0.000145		
Ν	-2.775210	-1.458536	0.000419	Ν	-2.754654	-1.456817	0.000748		
Ν	-1.319233	2.199464	-0.000762	Ν	-1.332349	2.178225	-0.001285		
Ν	-3.892075	-1.615395	0.000574	Ν	-3.864592	-1.596212	0.000759		
N	-1.147415	3.316991	-0.001576	Ν	-1.160400	3.286291	-0.002581		