Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

^eInstitute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China ^bKey Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China

*Corresponding author email address: Lianghui Gao (Ihgao@bnu.edu.cn); Weihai Fang (fangwh@bnu.edu.cn)

Supplementary Material: A Top-down and Bottom-up Combined

Strategy for Parameterization of Coarse-grained Force Fields for

Phospholipids

Mingwei Wan,^{ab} Junjie Song,^b Ying Yang,^b Lianghui Gao,^{*b} and Weihai Fang^{*ab}

Table SI-1. Bond	Table SI-1. Bond length and non-bonded parameters.					
Pairs	L₀(nm)	ε(kJ/mol)	<i>R</i> ₀ (nm)	α	в	
^a C ₃ -C ₃	0.410	3.091	0.534	11.442	11.907	
^a C ₄ -C ₄	0.450	4.357	0.578	12.798	14.254	
C5-C5	0.490	4.820	0.613	14.965	12.754	
^a C ₃ -C ₄	0.430	3.671	0.556	12.101	13.028	
C3-C5	0.450	4.582	0.596	13.839	13.483	
C ₄ -C ₅	0.470	3.859	0.574	13.085	12.323	
^b W _d -W _d	0.5054	3.015	0.4969	6.249	9.253	
C_3-W_d		2.470	0.486	8.456	10.496	
^b C ₄ -W _d		2.935	0.492	8.943	11.484	
C_5-W_d		3.017	0.503	9.670	10.863	
COC-COC	0.364	4.033	0.512	11.392	15.557	
C₃-COC	0.387	3.260	0.524	11.417	13.610	
C4-COC	0.407	3.844	0.546	12.075	14.891	
C5-COC	0.427	4.139	0.558	13.057	14.086	
W _d -COC		4.137	0.492	8.437	11.998	
NC ₃ -NC ₃	0.450	4.632	0.574	13.678	14.314	
C ₃ -NC ₃	0.430	3.671	0.540	12.510	13.055	
C4-NC3	0.450	4.501	0.567	13.231	14.284	
C5-NC3	0.470	4.696	0.581	14.307	13.512	
W _d -NC ₃		4.444	0.478	9.245	11.509	
COC-NC₃		4.508	0.528	12.483	14.923	
0000-0000	0.392	5.108	0.513	7.638	17.538	
C₃-COOC	0.401	3.334	0.559	9.348	14.451	
C4-COOC	0.421	4.013	0.560	9.887	15.811	
C5-COOC	0.441	4.248	0.562	10.691	14.956	
W _d -COOC		4.045	0.500	6.909	12.739	
COC-COOC		4.446	0.514	9.328	16.518	
NC ₃ -COOC		4.890	0.532	10.221	15.844	
PO ₄ -PO ₄		8.318	0.528	15.665	16.804	
C ₃ -PO ₄	0.370	3.995	0.522	13.388	14.145	
C4-PO4		4.533	0.526	14.159	15.477	
C ₅ -PO ₄		4.721	0.526	15.311	14.640	
W _d -PO ₄		6.197	0.512	9.894	12.469	
COC-PO ₄		5.544	0.511	13.359	16.168	
NC ₃ -PO ₄		6.183	0.488	14.638	15.509	
COOC-PO ₄		7.012	0.529	10.938	17.167	

SI.1. OPT1.35 FF and its predictions.

^aParameters taken from ref. 1. ^bParameters taken from ref. 2.

Table SI-2. Thermodynamic properties of single-component systems.						
Molecule	ρ (kg/m³)	ΔH _{vap} (kJ/mol)	<i>Г</i> (mN/m)	ΔGs (kJ/mol)		
$W_d - W_d$	999±4/997	45.9±0.2/44.0	69.4±2.0/72.0	-26.4±1.0/-26.5		
C₃	494±5/493	14.9±0.1/14.8	6.5±0.5/6.6	-8.6±0.1/-8.3		
C ₄	573±4/573	21.2±0.2/21.0	12.1±0.7/11.9	-11.8±0.1/-11.4		
C5	597±4/621	25.1±0.2/26.4	15.5±0.8/15.5	-14.2±0.1/-14.2		
C ₃ -C ₄	664±4/682	36.4±0.3/36.6	19.5±0.9/19.8	-20.0±0.1/-19.7		
C3-C2	662±4/699	40.4±0.4/41.5	22.0±0.7/21.1	-23.0±0.1/-22.2		
C4-C2	680±4/715	45.5±0.4/46.6	22.4±0.8/22.4	-25.5±0.2/-24.7		
сос	652±4/655	18.7±0.1/18.5	11.3±0.7/11.4	-10.1±0.1/-10.2		
COC−C ₃	704±3/739	32.6±0.3/32.4	19.3±0.9/19.5	-17.8±0.1/-17.5		
COC-C4	723±3/756	38.0±0.3/36.9	21.5±0.8/21.5	-20.5±0.1/-20.6		
C ₅ -COC-C ₅	754±3/790	66.9±0.5/63.5	26.9±0.9/25.4	-36.9±0.2/-36.0		
NC ₃	599±4/629	22.8±0.2/24.0	14.6±0.7/13.4	-12.4±0.1/-11.7		
NC ₃ -C ₃	683±3/716	37.0±0.3/34.4	20.0±0.8/19.2	-20.1±0.1/-19.6		
NC ₃ -C ₄	702±3/732	39.2±0.3/39.1	20.3±0.8/20.8	-23.6±0.1/-23.2		
NC ₃ -C ₅	713±3/744	43.2±0.4/43.8*	21.9±0.8/21.5	-25.8±0.2/-25.8		
^a COOC−C ₃	825±3/890	38.2±0.4/40.2	23.7±0.8/24.6	-22.0±0.1/-21.1		
^a COOC-C ₄	840±3/883	42.4±0.4/44.1*	24.1±0.9/25.7	-24.3±0.2/-24.3		
^a COOC−C₅	845±3/878	45.4±0.4/48.1*	24.7±0.9/26.6	-26.6±0.2/-26.7		
^b PO ₄ -C ₃	1231±4/1202	52.3±0.4/50.0	32.9±0.8/37.0	-29.0±0.2/-30.4		

Properties (left) in green and blue mean the deviation from experiment (right and black)³⁻⁵ is in the range of $\delta < 5.0\%$ and $\delta \ge 5.0\%$, respectively. *Properties experimentally unavailable are generated by extrapolating from the properties of the corresponding homologues. ^aReference properties are set as the average of the properties of COOC_x and C_xOOC with x equaling to 4, 5, or 6. ^bExperimental properties³⁻⁵ of trimethyl phosphate are set as reference.

Cross-term	$ ho_{mix}$ (kg/m ³)	E _{int} (kJ/mol)	$f_{\sf pe}$	ΔG _{hyd} or ΔG _C (kJ/mol)	Γ _{int} (mN/m)
C_3 - W_d	725±3/713	-29.7±0.3/-29.6	1.5%	hyd: 7.7±0.3/8.2	43.6±0.6/48.5
C4-Wd	752±3/738	-36.6±0.3/-36.7	1.5%	hyd: 8.1±0.3/8.7	47.8±0.3/49.4
C ₅ -W _d	742±3/753	-42.9±0.4/-43.7	3.6%	hyd: 9.7±0.4/9.8	49.6±0.5/50.0
COC-C₃	551±4/549	-23.2±0.2/-23.1	0.4%		
COC-C ₄	594±4/593	-27.6±0.3/-27.1	2.0%	C ₁₆ : -4.4±0.2/-6.2	
COC-C₅	<mark>622±4</mark> /626	-28.5±0.3/-29.1	3.9%		
COC-W _d	801±3/870	-54.7±0.5/-57.4	8.8%	hyd: -7.9±0.4/-8.0	
NC ₃ -C ₃	572±4/601	-29.9±0.3/-32.1	5.3%		
NC ₃ -C ₄	602±4/631	-37.1±0.4/-37.0	5.8%	C ₁₆ : -9.7±0.5/-9.25	
NC ₃ -C ₅	<mark>620±4/6</mark> 51	-37.5±0.4/-39.8	3.3%		
NC ₃ -W _d	896±4/860	-68.6±0.7/-69.8	8.0%	hyd: -12.1±0.6/-13.4	
NC₃-COC	658±4/691	-40.9±0.4/-43.5	3.7%		
COOC-C₃	683±4/715		3.5%		
COOC-C ₄	727±3/738		3.3%	C ₁₆ : -7.6±0.4/-8.3	
COOC-C ₅	743±3/752		4.4%		
COOC-W _d	973±5/996		4.4%	hyd: -11.9±0.5/-11.6	
COOC-COC	<mark>844±4/8</mark> 47		4.1%		
COOC-NC₃	801±3/839		2.7%		
^a C ₃ PO ₄ -C ₃	794±3/807		11.0%	C ₆ : -21.0±0.9/-24.4	
$^{a}C_{3}PO_{4}$ -C ₄	812±3/825		8.0%	C7: -19.6±0.8/-23.4	
^a C ₃ PO ₄ -C ₅	804±3/832		5.8%	C ₈ : -19.2±0.9/-22.4 [*]	
$^{a}C_{3}PO_{4}\text{-}W_{d}$	1085±5/1133		3.9%	hyd: -35.0±1.5/-36.4	
^a C ₃ PO ₄ -COC	921±5/962		5.1%		
^a C ₃ PO ₄ -NC ₃	907±5/933		5.8%		
C ₃ PO ₄ -COOC	1099±5/1132		2.9%		

CG Properties (left) in green and blue mean the deviation from the reference data (right) is in the range of $\delta < 5.0\%$ and $\delta \ge 5.0\%$. Here, the reference ρ_{mix} , E_{int} , and f_{pe} are obtained from AA MD simulations by using the OPLS FF.⁶ Free energy and interfacial tension are taken from experimental materials.⁷⁻⁸ *Properties experimentally unavailable are generated by extrapolating from the properties of the corresponding homologues. ^aThe C₃PO₄ group is represented by C₃–PO₄ in CG MD simulations and trimethyl phosphate in the case of AAMD simulations and experiment.

Гable SI-4. ⊤	able SI-4. The bonded parameters of DMPC and DPPC lipids.						
Bond	Lb	<i>k</i> _b	Angle	$ heta_{a}$	ka		
	(nm)	(kJ/mol/nm ²)		(degree)	(kJ/mol)		
	DMPC						
1-2	0.470	1250	1-2-3	140	7.0		
2-3	0.390	1250	2-3-4	135	7.0		
3-4	0.340	1250	2-3-5	180	7.0		
3-5	0.430	1250	3-5-6	180	11.0		
5-6	0.520	1250	5-6-7	180	11.0		
6-7	0.470	1250	4-8-9	180	11.0		
4-8	0.430	1250	8-9-10	180	11.0		
8-9	0.520	1250					
9-10	0.470	1250					
		DPPC					
1-2	0.470	1250	1-2-3	140	7.0		
2-3	0.390	1250	2-3-4	135	7.0		
3-4	0.340	1250	2-3-5	180	7.0		
3-5	0.430	1250	3-5-6	180	11.0		
5-6	0.520	1250	5-6-7	180	11.0		
6-7	0.420	1250	6-7-8	180	11.0		
7-8	0.360	1250	4-9-10	180	11.0		
4-9	0.430	1250	9-10-11	180	11.0		
9-10	0.520	1250	10-11-12	180	11.0		
10-11	0.420	1250					
11-12	0.360	1250					

SI.2. Meta-multilinear interpolation parameterization (meta-MIP)

The meta-MIP algorithm² was applied here to optimize parameters. It constructs local databases in an on-the-fly pattern, the connection of which leads to an optimal path, thus ensuring a high parameterization efficiency. The basic procedure is introduced as followings.

Fig. SI-1. Schematic diagram of meta-MIP.

Step 1. Starting from an initial parameter set P_s (Figure SI-1), Cell 1 encircling P_s is constructed. { ρ , ΔH_{vap} , Γ } at 2^{*d*} vertexes (black points) of Cell 1 are evaluated by performing simulations.

Step 2. The resolution inside Cell 1 is raised by multilinear interpolation via

$$f(\mathbf{P}_{x}) = \sum_{n=1,2^{d}} \left(\left(\prod_{m=1,d} w_{n,m} \right) \times f(\mathbf{P}_{n}) \right), w_{n,m} = \frac{p_{n+1,m} - p_{x,m}}{p_{n+1,m} - p_{n,m}}.$$
 (SI-1)

Here, f(P) is the property of a *d*-dimensional P (*d*=2 in Figure SI-1). The value of $f(P_x)$ is predicted by learning from the 2^{*d*} neighbors P_n . The weighting factor $w_{n,m}$ stands for the degree of deviation of P_x from P_{n+1} . $p_{x,m}$, $p_{n,m}$, and $p_{n+1,m}$ is the component of P_x , P_n , and P_{n+1} in the *m*th direction, respectively.

The high-resolution version of database Cell 1 is obtained (blue and red points). At each parameter point, the absolute deviations of { ρ , ΔH_{vap} , Γ } in relative to experimental values are calculated as { δ_1 , δ_2 , δ_3 }.

Step 3. The interpolated parameter sets are screened (red points) by defining a screening condition (SC) condition. For instance, SC={ δ_1 <200%, δ_2 <200%, δ_3 <200%} restricts all three properties loosely; SC={ δ_1 <5%, δ_2 <5%, δ_3 <200%} reserves accuracy for ρ and ΔH_{vap} ; SC={ δ_1 <5%, δ_2 <5%, δ_3 <5%} reserves accuracy for all three properties.

Step 4. The screened parameter sets are ranked by defining a ranking condition (RC). For instance, RC={decreasing $\delta_a = (\delta_1 + \delta_2 + \delta_3)/3$ } outputs the parameter sets in the ascending order of δ_a ; RC={decreasing δ_3 } outputs the parameter sets in the ascending order of δ_3 ; RC={increasing ε } outputs the parameter sets in the descending order of ε . Afterwards, the worst/best point P_w/P_b is obtained as the last/first ranked parameter set. Then, the optimal path in Cell 1 (purple solid line) is roughly obtained as the vector from P_w to P_b .

Step 5. The optimization moves to the next cell (P_e) by extrapolating the optimal path of Cell 1 (purple dash line). This is reasonable, because the optimal path is roughly linear in local areas, and further screening and ranking could adjust the path direction. An extrapolation factor $EF = |P_e - P_b| / |P_b - P_w|$ (suggested value of 0 to 1) is set to control the speed and stability of optimization.

Exit condition. If the predicted properties of P_b from interpolation are satisfying, further MD simulations are performed to test this point. If the simulated properties of P_b (or one of its neighbouring points) are satisfying, the optimization program exits.

Steps 1 to 5 are iterated until an exit criterion is met in Step 5 or an unphysical error (such as crystallization) occurs in any step. A detailed illustration for the usage of meta-MIP could be found in our previous works.^{2, 9}

SI.3. Properties of Membranes

Fig. SI-2. Fluctuation spectra for (a) DMPC membrane at 303 K, (b) DPPC membrane at 303 K, and (c) DPPC membrane at 323 K.

Fig. SI-3. Root mean-square deviation throughout a DMPC membrane at typical umbrella sampling windows where the normal position of a tagged lipid

is constrained.

References

1. M. Wan, J. Song, W. Li, L. Gao, W. Fang, Development of Coarse-Grained Force Field by Combining Multilinear Interpolation Technique and Simplex Algorithm. *J. Comput. Chem.* **2020**, *41*, 814-829.

2. M. Wan, J. Song, Y. Yang, L. Gao, W. Fang, Development of coarse-grained force field for alcohols: an efficient meta-multilinear interpolation parameterization algorithm. *Phys. Chem. Chem. Phys.* **2021**, *23*, 1956-1966.

3. J. Rumble, CRC Handbook of Chemistry and Physics. 97 ed.; CRC press: Boca Raton, 2017.

4. C. L. Yaws, *Thermophysical properties of chemicals and hydrocarbons*. 2 ed.; William Andrew: Beaumont, 2014.

5. C. L. Yaws, *The Yaws handbook of vapor pressure: Antoine coefficients*. 2 ed.; Gulf Professional Publishing: Houston, 2015.

6. M. J. Robertson, J. Tirado-Rives, W. L. Jorgensen, Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field. *J. Chem. Theory Comput.* **2015**, *11* (7), 3499-3509.

7. S. Cabani, P. Gianni, V. Mollica, L. Lepori Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution. *J. Solution Chem.* **1981**, *10* (8), 563-595.

8. S. Zeppieri, J. Rodríguez, Interfacial Tension of Alkane + Water Systems. *J. Chem. Eng. Data* **2001**, *46* (5), 1086-1088.

9. J. Song, M. Wan, Y. Yang, L. Gao, W. Fang, Development of Accurate Coarse-Grained Force Fields for Weakly Polar Groups by an Indirect Parameterization Strategy. *Phys. Chem. Chem. Phys.* **2021**, *23*, 6763-6774.